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Abstract: This article proposes a framework for integrating agricultural zoning data into insurance risk 
analysis. It is based on combining official public information from the Brazilian zoning program, ZARC, with 
open insurance data provided by the Brazilian Ministry of Agriculture and Livestock. The methodology 
presented in this article transforms ZARC information into distributional data and integrates it into a 
Bayesian model alongside insurance indemnities data, allowing for comprehensive risk analysis. It uses 
information on soil types from ZARC to develop basic best- and worst-case scenarios and calculate posterior 
distributions using insurance data. The resulting framework enables the comparison of municipalities, crop 
types, and overall risk classification. The study applies the framework to analyze the risk of soybeans, corn, 
wheat, and corn double-crop in Paraná State, resulting in consistent risk classifications across all crops and 
municipalities. The proposed framework has the potential to enhance agricultural risk management analysis 
for reinsurers, insurers, government agencies, and private companies. Future research could explore the 
use of this methodology to compare insurers, analyze risk in structured operations of credit and insurance, 
and evaluate risks at the farm level. This article presents a potential tool for improving risk analysis and 
decision-making in the agricultural sector.
Keywords: crop risk-management, Bayesian Analysis, agricultural risk classification, adverse selection, beta 
distribution.

Resumo: Este artigo propõe uma estrutura para integrar dados de zoneamento agrícola na análise 
de riscos de seguros. Baseia-se na combinação de informações públicas do programa brasileiro de 
zoneamento, o ZARC, com dados abertos de seguros fornecidos pelo Ministério da Agricultura e Pecuária. 
A metodologia apresentada transforma as informações do ZARC em dados de distribuição e as integra 
em um modelo Bayesiano juntamente com dados de indenizações de seguros, permitindo uma análise 
de risco abrangente. Utiliza informações sobre tipos de solo do ZARC para desenvolver cenários e calcular 
distribuições posteriores. A estrutura resultante possibilita a comparação entre municípios, tipos de culturas 
e classificação geral de risco. O estudo aplica a estrutura para analisar o risco de soja, milho, trigo e milho 
safrinha no Paraná, resultando em classificações de risco consistentes em todas as culturas e municípios. 
A estrutura proposta aprimora a análise de gestão de risco agrícola para resseguradoras, seguradoras, 
agências governamentais e empresas privadas. Pesquisas futuras poderiam explorar a metodologia para 
comparar seguradoras, analisar riscos em operações estruturadas de crédito e seguro, e avaliar riscos no 
nível das fazendas. O artigo apresenta uma ferramenta para melhorar a análise de risco e a tomada de 
decisões no setor agrícola.
Palavras-chave: gestão de riscos rurais, Análise Bayesiana, classificação de risco agrícola, seleção adversa, 
distribuição beta.
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1. Introduction

Extreme weather is the primary cause of agricultural production loss, with drought, floods, and 
storms responsible for substantial global agricultural losses (Food and Agriculture Organization 
of the United Nations, 2021). Climate variation explains over 60% of yield variability globally 
(Ray et al., 2015). Agricultural risk management models, crucial for producers and governments, 
must evolve due to increasing climate variability (Wilson et al., 2022). Producers face heightened 
exposure to severe weather, necessitating improved risk mitigation programs. However, progress 
requires integrating databases for a comprehensive risk management strategy.

The Brazilian agricultural risk management strategy and its connections to the Climatic Risk 
Agricultural Zoning system (ZARC) remain underexplored in the literature. This paper introduces 
ZARC and proposes an empirical Bayesian approach to enhance its role in agricultural risk 
management in Brazil. The uniqueness of ZARC, as a risk management tool for producers and 
policymakers, is that it uses scientific support from several disciplines, including agricultural 
climatology, soil science, crop science, and agricultural engineering (Gonçalves & Wrege 2018, 
Cunha et al. 2001a). Most advanced contributions to ZARC depart from crop growth and decision-
making models while relying on geographic and historical weather data and soil information 
(Pandolfo et al. 2021).

The technical literature supporting ZARC mostly comprises crop- and region-specific studies. 
For example, Cunha et al. (2001b) evaluated optimal sowing dates and production risk for 
wheat in Rio Grande do Sul, the southernmost Brazilian state. Bonatto et al. (2021) developed 
agricultural zones for gladiolus in Santa Catarina, while Uhlmann  et  al. (2020) focused on 
gladiolus production in Rio Grande do Sul. Brito et al. (2022) examined optimal sowing dates 
for corn in Northeast Brazil, a drought-prone region, and found adequate time windows for 
satisfactory crop development and production. Other contributions use similar methods for 
other crop-region combinations (Aparecido et al., 2019; Dominoni et al., 2021; Caldana et al., 
2019). A different set of technical papers focuses on innovative crops and candidates to be 
incorporated into ZARC in future revisions (Yamada & Sentelhas, 2014). The supporting literature 
available is rather extensive, and the articles cited here exemplify the analytical steps taken by 
Embrapa to refine ZARC periodically.

Producers tend to adhere to ZARC to access crop insurance premium subsidies. Insurance 
companies, in turn, rate contracts more efficiently when producers adhere to ZARC because it 
reveals their behavior ex-ante signing the contracts. By engaging through ZARC and following 
planting recommendations, producers reveal critical information such as region-specific weather, 
soil, and cultivar information. The same feature is absent in numerous agricultural insurance 
programs worldwide. Contract rating procedures tend to use deterministic variables only, 
failing to incorporate weather, for example, a stochastic variable, in the computation of policy 
premiums (Liu & Ramsey, 2023). In the United States, the Federal Crop Insurance Program (FCIP) 
attempts to circumvent this limitation by employing weather data to adjust contact ratings ex-
post computation (Rejesus et al., 2015). The authors demonstrate empirically that adding long-
term temporal weather data improves rating estimations (Liu & Ramsey, 2023). Several articles 
have contributed to the literature in these veins (Tack & Ubilava, 2015; Rejesus et al., 2015; 
Zhu et al., 2019; Dalhaus et al., 2020; Yi et al., 2020), frequently demonstrating economic gains 
in employing historical weather data to estimate production risk and price contract premiums.

Soil and topographic information are rarely included in risk management appraisals despite 
extensive crop science literature emphasizing their impact on yield and farm revenue (Sene et al., 
1985; Campbell et al., 1993; Kravchenko & Bullock, 2000; Cox et al., 2003; Nyiraneza et al., 
2012). Recent studies argue for the inclusion of soil data in methods to predict yield loss, 
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estimate guarantees, or rate premiums (Woodard & Verteramo-Chiu, 2017; Tsiboe & Tack, 
2021), noting that the Federal Crop Insurance Program (FCIP) currently omits this information. 
This omission leads to significant rating errors by the U.S. Risk Management Agency (RMA), 
potentially contributing to low participation in the FCIP (Woodard & Verteramo-Chiu, 2017). 
Without soil data, risk heterogeneity across farms cannot be accurately estimated, leading 
to overpriced contracts as a precaution against risk and adverse selection (Tsiboe & Tack, 
2021). Tsiboe & Tack (2021) propose integrating soil data into rating procedures, finding that 
it enhances RMA’s ability to predict losses and price contracts more accurately, especially for 
farms with limited historical data.

There is currently no research connecting ZARC information to crop insurance claims, hindering 
its potential as a decision-support tool. This study aims to bridge this gap by proposing an 
empirical Bayesian method converging agroclimatic zoning and insurance claims data to refine 
crop insurance offerings. Drawing inspiration from Shi & Irwin (2005), our study transforms 
ZARC’s projections into a prior distribution of production loss frequencies and updates it with 
insurance claims data. This aligns information within a unified framework, assessing deviations 
from ZARC’s baseline. Focusing on Paraná State in Brazil, our model demonstrates how technical 
agricultural data enriches risk assessment for better risk procedures. The results, reported at 
the municipality level, showcase the model’s superior predictability in various risk categories.

2. Theoretical Foundation

The accurate quantification of loss probability in agricultural insurance is crucial, requiring 
careful consideration of probability distributions. Studies highlight the impact of extreme 
value theory and the importance of distribution assumptions in pricing insurance, particularly 
in regions with skewed probability distributions, as well as the differences in premium rates 
for revenue versus yield insurance, influenced by price risk (see Ozaki et al., 2014; Brisolara 
& Ozaki, 2022).

In the context of insurance methodologies, Bayesian models offer a structured and rational 
approach to updating beliefs and predictions. The sample space Y is the set of all possible 
datasets from which a single dataset y will result. The parameter space Θ is the set of possible 
parameter values from which we hope to identify the value that best represents the true 
population characteristics. The idealized form of Bayesian learning begins with a numerical 
formulation of joint beliefs about y and θ, expressed in probability distributions over Y and Θ. 
For each numerical value θ ∈ Θ, our prior distribution p(θ) describes our belief that θ represents 
the true population characteristics. For each θ ∈ Θ and y ∈ Y, our sampling model p(y∣θ) describes 
our belief that y would be the outcome of our study if we knew θ to be true (Hoff, 2009).

The Bayesian approach has proven to be a robust methodology for risk analysis and pricing 
in agricultural insurance, particularly in contexts where data is limited or spatially correlated. 
Abbaspour (1994) proposed using Monte Carlo simulation to calculate the risk of a project 
based on uncertain variability of inputs, providing a solid foundation for decision-making 
under uncertainty in agricultural insurance. Complementarily, Ozaki (2009) applies Bayesian 
Hierarchical Models to price farm-level agricultural insurance, considering temporal effects 
and spatial dependencies, significantly improving premium rate estimation. These methods 
have been applied to data from Brazil and demonstrated that empirical insurance rates tend 
to be underestimated in high-risk areas and overestimated in low-risk areas, highlighting the 
importance of models that incorporate the dynamic structure of data and spatial correlations.
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Additionally, the technique of Nonparametric Bayesian Models for agricultural insurance 
adjustment, as described by Liu & Ker (2020), allows for the incorporation of extrinsic information 
without rigid assumptions about the parametric form of the data. This approach has effectively 
improved premium estimates in small and medium sample scenarios. Park et al. (2019) expand 
this approach by using Bayesian Kriging for spatial smoothing in agricultural insurance pricing, 
demonstrating significant improvements in the accuracy of insurance policies, especially in 
regions with distinct spatial structures. The combination of these advanced methodologies 
stands out for its ability to integrate stochastic and spatial variables in risk analysis, offering 
a promising pathway for the evolution of agricultural insurance practices, particularly in the 
context of limited and heterogeneous data.

This Bayesian approach has been applied in agricultural insurance to incorporate historical 
weather data and estimate conditional yield and loss cost distributions, improving the accuracy of 
risk predictions and premium ratings (Liu & Ramsey, 2023). Ozaki & Silva (2009) use a hierarchical 
Bayesian framework to account for spatio-temporal relationships in yield estimation, revealing 
that insurers may underprice insurance contracts in high-risk areas while overpricing them in 
low-risk areas. In the Bayesian framework, “the probability of an event is given by the belief 
in how likely or unlikely the event is to occur. This belief may depend on quantitative and/or 
qualitative information, but it does not necessarily depend on the relative frequency of the 
event in a large number of future hypothetical experiments, a characteristic that has led some 
to comment that Bayesians do it with less frequency” (Judge et al., 1988).

Our contribution to the agricultural risk management literature is twofold. First, we converge 
the recent crop insurance literature and the agroclimatic zoning literature to explore synergies 
and demonstrate empirically how the latter may refine the former to better assess crop-specific 
and municipality-level risk. To the best of this article’s knowledge, this is the first scientific 
attempt to link agroclimatic zoning and crop insurance claims data to inform risk assessment 
procedures undertaken by insurers, reinsurers, and policymakers. We demonstrate how the 
complexity of an agroclimatic zoning system in systematizing weather, soil, and crop databases 
can be exploited further for risk analysis in crop insurance and credit. Second, we explore the 
possibilities of the Bayesian approach to propose a framework for risk categorization and 
classification of microregions (municipalities) or individual farmers.

A central task of this work was to harmonize the theoretical foundations of statistical disciplines, 
such as Bayesian Analysis and statistical distributions, with the technical assumptions used in risk 
management mechanisms in Brazil, such as agroclimatic zoning and agricultural insurance. This 
involved not only considering the appropriate mathematical apparatus but also systematizing 
the variables used in the empirical application of the Brazilian ZARC. To ensure a clearer and 
more objective presentation, these theoretical foundations and systematization efforts are 
directly integrated into the modeling, which is explained in the subsequent methodology section.

3. Methodology

ZARC reports the maximum frequencies of production loss organized in four risk classes 
for every possible 10-day sowing window for 43 cropping systems grown in three soil types. 
The information is updated yearly and becomes accessible to agricultural producers from all 
municipalities nationwide. The analytical steps within ZARC begin with combining crop information, 
soil characteristics, and weather data in an application of the Water Requirement Satisfaction 
Index (WRSI) procedure to compute the risk classes. Historic rainfall (R), temperature (C), and 
evapotranspiration (ET) are the primary data used for computing WRSI at every plant growth 
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stage (i.e., sowing and emergence, vegetative growth, flowering and fruiting, and ripening). 
While R and C are direct readings from meteorological stations, ET is conditional on crop 
characteristics and soil type. The equation below summarizes WRSI as a function of R, C, and ET. 

( ), ,WRSI f R C ET= 	  (1)

A total of 3,575 weather stations linked to a network managed by Embrapa are spread across 
the national territory and provide primary data for ZARC calculations. The meteorological 
series used for WRSI computations comprise 30 years of daily data on R and C and are updated 
annually. Critical WRSI thresholds are defined according to empirical and technical criteria for 
crops and soils.

With a series of WRSI estimates and critical thresholds at hand, simulations follow by varying 
sowing dates. An algorithm calculates the frequency of WRSI occurring under critical thresholds. 
Unfavorable events ( )u  occur when the calculated WRSI falls below critical thresholds at some 
point during the crop cycle, temperatures reach 0ºC during the emergence stage (favorable to 
frost conditions), or rainfall exceeds expected averages during harvest windows. ZARC estimates 
probabilities ( )z  as a sum of unfavorable events u divided by the length of the crop cycle (coded 
as 10-day windows) and averaged across the 30-year historical series. These simulation-based 
computations are standard for all cropping systems and municipalities included in ZARC and 
can be summarized as follows:

( )ijz p u= 	 (2)

where ijz  are probabilities simulated for three soil textures j and by varying the 10-day period 
i in which crops are sowed. Soil textures are assumed as proxies for soil types and defined as 
follows:
● 1j =  if clay content is higher than 10% and lower than 15%.
● 2j =  if clay content falls between 15% and 35%, and the content of sand is less than 70%.
● 3j =  if clay content is higher than 35%.

ZARC labels the risk classes using the upper threshold probabilities. The reported estimates 
ˆijz  are 20% for 0.2ijz ≤ , 30% for 0.2 0.3ijz≤ ≤ , 40% for 0.3 0.4ijz≤ ≤ , and “-” when 0.4ijz ≥ . In other words, 
ZARC makes it explicit for producers that sowing is not recommended in 10-day periods marked 
with a “-” sign. Sowing crops in all other 10-day periods suggests that production losses occur 
with maximum frequencies of 20%, 30%, or 40%. Recommendations of ZARC are summarized 
in tables as presented in the matrix below:

( )
1,1 1,2 1,3

,

36,1 36,3

ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ
mk ij i j

mk

z z z

Z z z

z z

=  
	 (3)

Subscript m represents a given municipality, and k  denotes a crop-specific characteristic such 
as maturation group. The matrix ˆ

mkZ  reports frequencies of loss with set { }0ˆ 20,3 ,40, Z = −  for 
municipality m and maturation group k∈ K , and set { }1, 2,3K = . Table 1 below offers an example 
of ZARC’s outcomes.

It is worth noting that ZARC’s predictions are the frequency of production losses and do not 
capture the severity of occurrences. To obtain premium subsidies through PSR, complying 
growers sow crops in windows reported with 20, 30, or 40% maximum loss frequency.
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Table 1: Example of ZARC recommendation for sowing soybeans in the municipality of Castro in the 
State of Paraná.

10-days 
periods(i)

Castro(m), MG=1(k)  
Soil type(j)

Castro(m), MG=2(k)  
Soil type(j)

Castro(m), MG=3(k)  
Soil type(j)

1 2 3 1 2 3 1 2 3
J 1 - - - - - - - - -

2 - 40 40 40 40 40 40 40 40
3 - 40 40 40 40 40 40 40 30

F 4 - 40 40 40 40 30 30 20 20
5 30 30 30 20 20 20 20 20 20
6 20 20 20 20 20 20 20 20 20

M 7 20 20 20 20 20 20 20 20 20
8 20 20 20 20 20 20 20 20 20
9 - - - - - - - - -

Source: ZARC online and “Plantio Certo” mobile application. “MG” refers to maturation groups.

To assess the risk of crop insurance, we utilize the ZARC’s predicted loss frequencies and 
sowing recommendations for four major crops, namely soybeans, corn, corn double-crop, and 
wheat, over a five-season period spanning from 2017/18 to 2021/2022.

This approach aligns with the timeframe adopted by insurers in their market projections, 
allowing us to comprehensively evaluate the performance of the insurance policy. Our findings 
provide valuable insights into the crop insurance market and can guide policymakers and 
stakeholders in enhancing the policies to better meet the needs of farmers and mitigate the risks 
associated with crop production in Paraná, Brazil. We take ZARC’s reported frequencies ( ˆ )ijz ) for 
four cropping systems cultivated in 399 municipalities. The choice of these data is justified by the 
significant role of Paraná State in Brazil’s agribusiness sector and the widespread participation 
of producers in the crop insurance market. To ensure a robust analysis, we analyzed a time 
series of five years of insurance data for each of these five seasons. This approach aligns with 
the timeframe used by insurers in their market evaluation.

We manipulate ZARC’s reported estimates ( ˆ )ijz ) to build a prior distribution of production 
losses. Three steps describe the process of transforming ZARC data.
1.	We convert the maximum frequencies ˆijz  into expected loss frequencies. Simple transformation 

leads us to ijz  taking values contained in set , where { }0.1,0.25,0.35, -= .
2.	To match the plausible assumption that producers will concentrate sowing activities in 

time windows with low frequencies of production loss, we use planting progress estimates 
published seasonally by the Secretary of Agriculture (Secretaria Estadual de Agricultura e 
Abastecimento, 2022 - in Portuguese). We multiply the transformed loss frequencies ijz  by 
the area sowed in municipality m in 10-day window i  to arrive at the weighted frequency of 
loss. Let ir  denote the area rate sowed in 10-day window i, extracted from planting progress 
estimates. While the weighted frequencies of production loss may be interpreted as a variable 
Θ, with 0 1θ≤ ≤ , the sum of i ijr z×  over all possible sowing windows leads to ( )E Θ , an adequate 
representation of the expected production loss frequency for maturation group k cultivated 
in soil type j in municipality m coming from ZARC. In summary:

( ) i ij
i

E r zΘ = ×∑ 	 (4)

3.	When we multiply the resulting term ( )E Θ  by the number of 10-day periods (n) with positive 
sowing recommendations, we arrive at the estimated number of events with production loss 
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over all possible sowing windows kjm. In mathematical notation, the expected number of 
crop production attempts with loss kjmα  and the expected number of successful production 
attempts (without loss) become:

( )kjm E nα = Θ × 	 (5)

kjm kjmn aβ = − 	 (6)

Estimates α  and β  were normalized on a percentage basis to ensure the distribution 
follows the same proportions utilized in ZARC. The estimates as well as the natural bounded 
behavior of Θ, with 0 1θ≤ ≤ , become convenient parameters for studying the frequency of 
production losses through the lenses of the finance and insurance literature. We employ α  
and β  as parameters for fitting a beta distribution, commonly used for modeling insurance 
loss. The beta distribution has the advantage of being flexible and assuming several shapes 
as α  and β  vary. Further details on the application of beta distributions to model crop 
production risk (Ozaki et al., 2011) and a theoretical treatment for modeling the probability 
of occurrences (Casella & Berger, 1990) are available in the literature. In our application, if 

( )~ , beta α βΘ  then the probability of a given production attempt θ  to experience loss follows 
the probability density function:

( ) ( )
( ) ( ) ( ) 11 1   0 1f forβαα β

θ θ θ θ
α β

−−Γ +
= − ≤ ≤
Γ Γ 	 (7)

where, ( )f θ  refers to the probability density function of loss frequencies derived from ZARC. 
In our application, for example, ( )0.1 0.5P Θ > =  means that half of the production attempts are 
likely to experience a loss every ten crop years.

Depending on the analytical goals or granularity of interest, analysts conducting research 
for insurance companies or policymakers may apply steps 1 through 3 and aggregate or 
disaggregate results as needed. Parameters α  and β  can be calculated for state average by 
summing estimates over all municipalities m and dividing by the number of municipalities M. 
Equations E8 and E9 summarize the aggregation procedure.

1

M
kjmm

kj M

α
=Α =

∑ 	 (8)

1

M
kjmm

kj M

β
=Β =

∑ 	 (9)

The same aggregation step is possible over maturation groups k or soil types j. For the 
purposes of this application, we aggregate α  and β  over maturation groups and soil types, 
leading to mΑ  and mΒ . Specific characteristics such as maturation groups and soil types are also 
absent in insurance contracts, so aggregating over these parameters does not compromise the 
effort of combining agricultural zoning loss projections and insurance claims data.

The beta distribution derived from ZARC’s loss projections becomes the prior for improving 
the predictability power of production losses. We employ the Bayesian updating method to 
combine historical data of crop insurance claims and obtain a posterior distribution with a 
refined capability to predict the frequency of crop losses.
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Historical data on insurance contracts with subsidized premiums is publicly available through 
the “open data” (“dados abertos”) platform maintained by the federal government of Brazil. Data 
on individual policies are available from 2006. In this article, we retrieved data for individual 
insurance contracts issued for soybean, corn, corn double-crop, and wheat grown in all Paraná 
municipalities during the seasons spanning from 2012/13 to 2021/22. The dataset consists of 
21 variables for all 27 States of Brazil. We focused on a subset of five variables: municipalities, 
crop, value of indemnity, and year of the policy. We then compiled a dataset specifically for 
Paraná, which included 348,343 rows, with 154,384 for soybean, 26,206 for corn, 112,269 for 
double-cropped corn, and 55,484 for wheat.

The variable reporting indemnity amounts is of central interest. Of all policies in the 
dataset, 56,650 resulted in indemnities, totaling R$2.8 billion over the selected time span. 
When indemnity payment is greater than zero for a given contract, we let it take the value 
of 1 and 0 otherwise. Let y denote the number of indemnity payment occurrences across all 
insurance contracts c issued for the crop of interest in municipality m, such that { }0,1,2, ,Y c∈ … . 
Considering the origin of the dataset and the institutional mechanisms in place to monitor 
and verify crop production loss, one may plausibly infer that the occurrence of indemnity 
payments is conditional on the occurrence of loss. Therefore, the probability of y conditional 
on the occurrence of production loss, ( )| ,P y θ  follows a binomial distribution with parameters 
c and θ . In mathematical notation:

( )( | ) 1 c yyc
P y

y
θ θ θ − 

= − 
 

	 (10)

While the conditional probability of indemnity payments holds for all crops of interest in 
all municipalities m, the aggregation argument presented above is also applicable. Analysts 
and policymakers may find useful examining the conditional probability of indemnities at the 
State level, for example.

Knowing that the prior distribution of production loss frequencies derived from ZARC has a 
beta ( , α β ) distribution and the transformed data on the occurrence of indemnity payments Y  
gives origin to a conditional probability that follows a binomial distribution ( ,n θ ), we can apply 
the Bayesian updating method to obtain the posterior predictive distribution for production 
losses. The posterior distribution computation follows the procedure demonstrated by Hoff 
(2009, pp. 35-38):

( ) ( )
( )

( | )
|

P P y
P y

P y
θ θ

θ =

( )
( )
( ) ( ) ( ) ( )111                1  1 c ya yc

yP y
βα β

θ θ θ θ
α β

− −−Γ +  
= × − × − 

Γ Γ  

( ) ( ) 11               , , , 1 c yyk c y βαα β θ θ + − −+ −= × −

( ),beta y c yα β= + + − 	 (11)

The beta posterior distribution becomes a combination of the prior and the transformed 
insurance claims data with easily recognized raw moments:

( )| yE y
c

αθ
α β

+
=

+ +
	 (12)
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( ) ( ) ( )| 1 |
|

1
y E y

Var y
c

θ θ
θ

α β
−

=
+ + +

	 (13)

Empirical calculations were conducted in a Microsoft Excel spreadsheet. We built a system of 
equations to simulate alternative scenarios for varying crops and municipalities. A classification 
criterion was developed to validate our methodology and compare the predictability power 
of the posterior distribution against production loss frequencies derived from the agricultural 
zoning system ZARC.

While the resulting posterior distribution utilized a beta prior with aggregated parameters 
over crop-specific characteristics and soil types, our empirical comparative assessment 
requires the preparation of two additional beta prior distributions. The first followed the 
procedural steps 1 through 3 listed above but maintained sandy soils for soil type instead 
of aggregating over the parameter. The second beta prior distribution used clay soils for 
soil type.

We assume the sandy-soil beta distribution represents the worst-case production scenario for 
grains in Paraná, whereas the clay-soil beta distribution corresponds to the best-case scenario. 
The underlying reasons for this assumption are twofold. First, clay and sandy soils are in the 
two extremes of a water-holding capacity continuum, where clay soils retain more water and 
meet crop water requirements longer than sandy soils. Thus, one may plausibly argue that 
clay soils tend to reduce crop exposure to drought stress compared to sandy soils. Second, 
a careful examination of Table 1 suggests that soil type 3 (clay) decreases the expectation of 
production losses consistently regardless of the maturation group. It also extends sowing 
windows compared to sandy soils. These are common trends for all municipalities or crops 
considered in this work. In fact, the reasons provided for the determination of risk boundaries 
as a function of soil types converge as WRSI computations lead to ZARC risk classes ( ˆijz ) and 
rely on the technical characteristics of soils and crops.

The classification criteria comprise three broad categories and seven sub-categories 
based on the direct comparison of expected values and distributions for the best-case 
production scenario (with ( )bstE θ  and ( )bstP θ ), the worst-case production scenario (with ( )wstE θ  
and ( )wstP θ ) and the posterior (with ( )|posE yθ  and ( )|posP yθ ) (Figure 1). The three broad risk 
categories are:
a)	When ( ) ( )|  .pos bstE y Eθ θ<  If posE  lays to the left of the 47.5% tail of the best-case scenario, we 

attributed class “A”. If posE  falls inside of the 47.5% left tail of best-case production scenario, 
we attribute class “B”.

b)	When ( ) ( ) ( ) |  .bst pos wstE E y Eθ θ θ< <  If posE  falls within the right 47.5%-tail of best-case distribution 
and to the left of the 47.5%-tail of the worst-case distribution, we classify as “C. If posE  is 
within in both tails, we classify as “D”. If posE  lays within the left 47.5%-tail of the worst-case 
distribution but not in the right 47,5%-tail of best-case distribution, we classify as “E”.

c)	 When ( ) ( )|  .pos wstE y Eθ θ>  If posE  falls within the right 47.5%-tail of worst-case production 
scenario distribution, we classify it as “F”, and “G” otherwise.
Every municipality followed this classification for all four crops of interest and five 5-year 

ranges, as presented in the results. We omitted municipalities with less than 50 insurance 
contracts from the comparative analyses.1

1	 Although small sample sizes could generate posterior distributions, the resulting distribution would be dominated by 
the information contained in the priors, adding little value to the comparative analysis. From a technical standpoint, 
nevertheless, the resulting distribution could still be used as a reference for risk assessment.



10/19Revista de Economia e Sociologia Rural  63: e284274, 2025

Enhancing crop insurance analysis with agricultural zoning data

Figure 1: Classification criteria based on the position of the posterior, best-case scenario,  
and worst-case scenario distributions.

Source: Prepared by the authors.

4. Results and discussion

First, we report results on the state-level aggregated results to demonstrate the use of 
our analytical framework and provide an overview of crop-specific production risk at the 
macroregional level. The analysis for the 399 municipalities follows and details the intuitions 
drawn from the state-level results.

Table 2 presents basic descriptive statistics for the total number of policies and policies 
with losses in five-year periods. Soybean dominates in the number of policies and production 
area with corn double-crop ranking second, followed by wheat. Production loss data indicate 
higher probabilities for winter crops (corn double-crop and wheat) than soybean and corn. 
Approximately 20% of insurance contracts for corn double-crop and wheat incur losses, while 
soybean and corn experience losses in about 10% and 4% of cases, respectively.

Notably, the last 5-year period saw a high loss rate for all crops, particularly for corn double-
crop. Contracts for all crops were executed more frequently in this period than in the previous 
quinquennials. Over 40% of contracts for corn double-crop were executed due to losses, primarily 
associated with the La Niña phenomenon in the 2021/2022 season, causing droughts in Southern 
Brazil and Argentina (Grimm, 2004; Heinemann et al., 2021). La Niña is recognized as one of the El 
Niño Southern Oscillation (ENSO) phases, resulting from unusual water temperature changes in 
the Central and Eastern Tropical Pacific Oceans (National Oceanic and Atmospheric Administration, 
2023). The detailed statistics for the crops of interest per analysis period are provided in Table 2.

Figure 2 illustrates the proposed methodology and presents state-level analysis results, 
showing posterior, best-case, and worst-case scenario distributions for each crop in two 5-year 
periods. Visually, the fifth period shifted all posterior distributions to the right, aligning expected 
losses for summer crops with ZARC’s predictions only in that period. For winter crops, expected 
losses moved outside ZARC’s inner range in the last quinquennial. While the analysis suggests 
ZARC may overestimate losses for summer crops in neutral years and underestimate losses 
for winter crops in unfavorable seasons, municipality-specific observations may differ.

The expected risk level for summer crops (soybean and corn) tends to be lower than ZARC’s 
best-case scenarios in most 5-year periods, except for the fifth period (2017/18 to 2021/2022) 
influenced by La Niña. In neutral weather seasons, the predictive distribution from insurance data 
and ZARC leads to lower production risk expectations than ZARC predicts. However, in challenging 
years, especially during La Niña, the expected probabilities of losses align with ZARC’s predictions.

Expected losses for winter crops (wheat and corn double-crop) derived from posterior 
distributions align more closely with ZARC’s predictions. In neutral weather years, loss frequencies 
from the combination of insurance data and zoning information fall within ZARC’s predictions. 
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Under unfavorable conditions, insurance policies tend to yield higher expected loss probabilities 
than ZARC’s baseline. This is observed in the 5-year period 2017/18 to 2021/22.

Table 2: Total number of policies, policies with loss, and loss rates for the crops of interest per 
period of analysis

Period of analysis
Soybeans Corn Crop

Total Loss Loss rate Total Loss Loss rate
2013/14 to 2017/18 130,364 12,942 9.9% 6,680 97 1.5%
2014/15 to 2018/19 99,431 8,729 8.8% 4,391 64 1.5%

2015/16 – to 2019/20 79,293 7,058 8.9% 2,282 49 2.1%
2016/17 - 2020/21 100,139 7,896 7.9% 3,861 175 4.5%
2017/18 - 2021/22 129,925 19,361 14.9% 6,147 706 11.5%

Wheat Corn Double- Crop
2013/14 to 2017/18 29,944 5,650 18.9% 36,203 7,429 20.5%
2014/15 to 2018/19 26,113 3,865 14.8% 32,009 7,097 22.2%

2015/16 – to 2019/20 22,117 4,967 22.5% 39,020 8,816 22.6%
2016/17 - 2020/21 23,430 5,495 23.5% 55,148 14,128 25.6%
2017/18 - 2021/22 25,630 7,050 27.5% 72,192 29,097 40.3%

Source: Prepared by the authors based on insurance data collected from “dados abertos”.

Figure 2: Risk comparison using the posterior distribution versus the best-case scenario and the 
worst-case scenario distributions for four crops and two 5-year periods.

Source: Prepared by the authors.
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The municipality analysis yielded 2,904 comparative cases (municipalities with data 
on crops × four crops × five 5-year periods). While it is impractical to report all results, 
we provide a summary and an extract for the municipality of Maringá as an example, 
reinforcing the model’s applicability with microregional data. Table 3 outlines municipality 
counts per risk category, showing that most summer crop-producing municipalities fall in 
categories “B” or “C.” Notably, the last corn quinquennial saw increased risk, with more 
municipalities in categories “D” and “E.” Some soybean and corn-producing municipalities 
exhibit considerably less risk than the state average, supporting the argument that ZARC 
overestimates losses for summer crops.

Table 3: Count of municipalities per risk category.

Type of 
Cultivation

Period
( ) ( )|  pos bstE y Eθ θ< ( ) ( )

( )
 |

 
bst pos

wst

E E y

E

θ θ

θ

< < ( ) ( )|  pos wstE y Eθ θ>
Total of 

Municipalities

A B C D E F G

Soybeans 2013/14-2017/18 26 103 131 8 16 0 0 284

2014/15-2018/19 26 117 118 6 11 0 0 278

2015/16-2019/20 16 111 110 5 13 0 0 255

2016/17-2020/21 42 147 80 1 12 2 0 284

2017/18-2021/22 12 90 159 12 38 1 1 313

Corn Crop 2013/14-2017/18 0 23 16 0 0 0 0 39

2014/15-2018/19 0 13 13 0 0 0 0 26

2015/16-2019/20 0 6 3 0 0 0 0 9

2016/17-2020/21 0 8 14 1 0 0 0 23

2017/18-2021/22 0 8 15 6 4 2 0 35

Wheat 2013/14-2017/18 6 56 8 32 18 10 7 137

2014/15-2018/19 17 49 14 28 11 6 6 131

2015/16-2019/20 7 22 4 53 5 21 1 113

2016/17-2020/21 12 21 7 37 7 23 7 114

2017/18-2021/22 9 9 3 37 12 25 21 116

Corn 
Double-

Crop

2013/14-2017/18 3 27 27 20 24 15 5 121

2014/15-2018/19 0 10 28 22 31 21 6 118

2015/16-2019/20 0 14 32 22 31 29 8 136

2016/17-2020/21 10 38 13 56 19 27 13 176

2017/18-2021/22 0 15 0 32 10 78 61 196

Source: Prepared by the authors

For winter crops, risk categories are more dispersed. Over 37% of wheat-growing 
municipalities are in category “B” initially, shifting to “D” in later periods. La Niña led to 
more “G” municipalities in the last 5-year period. Similar observations apply to corn double-
crop. The dispersion underscores the need for regional granularity. Although wheat was 
generally in category “C” at the state-level analysis, the municipality-specific analysis reveals 
variations from the state average, with some showing less risk (category B) and others more 
risk (categories “F” or “G”).
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Figure 3 illustrates the posterior distributions of production losses for Maringá in the 2017/18 
to 2021/22 period. Soybeans (15% expected losses), corn (20%), wheat (28%), and corn double-
crop (40%) demonstrate varying risk levels. We can classify the distributions using the same 
classes from A to G described in Figure 1. For Maringá, soybeans are in category “C,” corn in “D,” 
while wheat and corn double-crop are in category “F.” Results confirm lower risk for summer 
crops than winter crops in Maringá.

Figure 3: Risk comparison for Maringá using the posterior distribution versus the best-case scenario 
and worst-case scenario distributions for four crops between 2017/18 and 2021/22.

Source: Prepared by the authors

Figure 4 below plots a map of Paraná municipalities taking the computed risk categories in 
two 5-year periods. Municipalities are color-coded to represent the risk categories calculated 
for the first and last 5-year periods analyzed, from 2013/14 to 2017/18 and from 2017/18 to 
2021/22, respectively. A visual evaluation allows one to notice changes in risk over time and 
regions. A significant increase in the production risk of soybeans takes place in the West side of 
the state from the first to the last 5-year period analyzed. Setting aside the argument regarding 
the predictability power of ZARC, our methodology assists practitioners in visually recognizing 
that Western municipalities are more prone to experience losses in soybean operations 
compared to Eastern municipalities when unfavorable weather occurs. Despite the dispersion of 
municipalities across risk categories, one may also note that a set of Central-East municipalities 
experience little to no change in wheat production risk. Corn double-crop is highly prone to 
experience production losses when weather conditions worsen, regardless of the location.
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Figure 4: Color-coded municipalities according to risk categories (codes A to G, follow classification 
in Figure 1) in two  5-year periods (a = 2013/14 to 2017/18 and b = 2017/18 to 2018/2022).

Source: Prepared by the authors

5. Conclusions

Our study has demonstrated that climatic zoning data can be effectively integrated into an 
analytical framework along with insurance data to create a flexible risk assessment tool. This 
proof of concept has the potential to offer a powerful risk analysis tool for specific crops at both 
macro and micro levels, ranging from states, municipalities, and even individual operations. 
This framework is appealing because the data used is publicly available and updated annually. 
While the ZARC information has been successfully applied as an agricultural zoning reference, 
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no additional tools have been developed in the literature for further risk assessment using 
the extensive set of information available. Our research addresses this gap and provides a 
feasible solution.

The proposed methodology builds on the research of Woodard & Verteramo-Chiu (2017), 
who found that soil information could be a valuable parameter for determining insurance 
rates in the United States. It is important to note that in the United States, the government 
determines crop insurance prices, whereas in Brazil, private companies playing in the insurance 
market set the rates. Soil type is a criterion for risk selection of insurers in Brazil, and some 
companies choose not to offer policies for crops grown in sandy soils. This article’s framework 
shows how insurers can better ascribe risk levels at the municipality level by considering soil 
type data coming from the agricultural zoning system, ZARC. When soil type is observed for 
a specific operation, insurers may employ a refined version of our framework to compare 
expected losses from the posterior distribution versus the municipality-level loss expectation 
for the soil type of interest.

Results show that the proposed analytical framework is better equipped to study expected 
losses of the insurance market in soybean and corn crops than the agricultural zoning system 
alone. In general terms, ZARC tends to overestimate the probabilities of production losses 
compared to our model for most locations. Production risk tends to be more dispersed for 
wheat and corn double-crop, leading analysts to recognize the importance of refining data 
granularity whenever possible. Municipality-level results overcome generalizations derived 
from the state-level analysis, which could lead to misinterpretations in risk assessment efforts 
and underwriting. Finally, our model captures the risk increase far better than ZARC does when 
unfavorable weather occurs. This was demonstrated by the right shift of expected losses for 
all crops analyzed in the last 5-year period, heavily marked by droughts caused by the La Niña 
phenomenon, compared to the other periods. This result complements the research efforts 
of Yi et al. (2020) and Tack & Ubilava (2015).

This article has yielded other important conclusions regarding research methods. Specifically, the 
combination of ZARC’s recommended sowing windows with insurance data distributions proved to 
be effective in providing useful information. However, it is necessary to have a clear understanding 
of the methods’ potential, considering the amount and quality of the information available.

Firstly, it should be noted that the Bayesian approach is often based on beliefs surrounding the 
probabilities of a certain phenomenon. Theoretically, these beliefs can be subjectively extracted 
from evaluations of experts, for example, as proposed by Shi & Irwin (2005). By choosing an 
appropriate model, these beliefs can be updated with new data to produce better estimates. 
Our application of the Bayesian approach is slightly different. We depart from a set of information 
from the agricultural zoning system ZARC, which cannot be considered a vague set of beliefs 
about the frequency of crop losses. As previously explained, this information is derived from 
a robust computational process that includes georeferenced soil data and long-term weather 
data. Therefore, ZARC’s information provides a robust starting point by itself, and not initial 
beliefs or empirical experience that necessarily require updates to generate informed estimates.

Secondly, it is important to properly interpret the meaning of data or belief updating. Farmers 
make the choice to purchase crop insurance based on their beliefs about their intrinsic risk. 
Insurance companies choose to sell policies based on their beliefs about the risk of loss in different 
marketplaces where they operate independently. Even if we assume that insurance companies 
perfectly assess risk and price policies (which is unlikely), other factors, such as the opportunistic 
behavior of agents or extreme weather oscillations, could cause discrepancies between expected 
and realized risks. This may represent a process of adverse selection, as explained by Akerlof (1970). 
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In summary, the combination of insurance data with ZARC’s recommendations can be considered a 
numeric expression of adverse selection in the insurance market if ZARC is assumed as a baseline.

We used the recommendations of sowing windows for soil types to identify risk boundaries 
for risk analysis in this study. The approach to simulate risk evaluations was based on theoretical 
assumptions regarding a weighted average distribution of best and worst scenarios. The resulting 
risk expectations from the scenarios were in line with field expectations for the types of crops 
and regions. Future studies or practical applications may consider specific soil data from 
individual policies, allowing for a more specific risk assessment.

The article highlights two important practical implications for policymaking that deserve 
final remarks. Firstly, winter crops are highly risky activities, as demonstrated by the results 
presented for wheat and corn double-crop. To mitigate this risk, analysts could consider being 
more rigorous in allowing for sowing windows or even ruling some municipalities out of zoning 
recommendations. Secondly, the historical analysis shows that the risk of crop insurance contracts 
can be significantly aggravated within a determined time horizon, as seen with soybeans and 
corn double-crop for the period between 2017/18 and 2021/22 compared to previous periods. 
In cases where losses are disproportionate, an extended protection level may be put in place to 
provide compensation and protect the crop insurance chain. The methodology presented in this 
article initiates a conversation to determine situations where losses much above expectations 
occur, which may lead to the creation of a crop disaster management program.

Currently, the Brazilian Agricultural Research Corporation (Embrapa) is in the process of 
validating new ZARC recommendation procedures based on the concept of “available water 
capacity”. This methodology involves prescribing sowing windows based on six water availability 
thresholds, which are determined by analyzing the soil of individual producers. If this approach 
is approved, it will be possible to calculate individual risk indexes using the analytical framework 
outlined in this paper. This would represent a significant advancement in understanding the 
complex relationships that exist at the farm level and how they respond to idiosyncratic shocks, 
as described by Miranda & Glauber (1997).

The methodology proposed in this paper could also be used as an alternative to risk pooling 
methodologies of municipalities using ZARC risk ascription, overcoming the problem of missing data 
explored in other papers. The methodology provides a powerful tool for insurers and reinsurers, 
particularly in a country like Brazil, where crop insurance is operated by private agents. The decision 
of which markets to focus on is crucial to distribute risks along the market. For reinsurers interested in 
knowing how insurers perform and if they are appropriately distributing adverse selection throughout 
the market, available data can be used to provide a detailed analysis of insurers according to their 
performance on the market. Future research could explore this application further.
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