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Abstract: Carbon pricing involves assigning a monetary value to greenhouse gas emissions. This paper 
systematically reviews the state of carbon pricing in global agriculture over a 20-year period. Based on a 
systematic literature review, carbon valuation methods were correlated with prices attributed to determinants 
identified in academic publications, as well as extrapolated to the Brazilian agricultural environment. There 
was variation in carbon prices (minimum of USD 2.6/tCO2e and maximum of USD 157.5/tCO2e), determined 
by different socio-economic, agricultural and geographical heterogeneities. Our results showed negative 
relationship between Gross Domestic Product (GDP) per capita and CO2 emissions per capita, indicating high 
elasticity of emissions in response to changes in carbon prices. There was also positive relationship between 
nitrogen fertilizer use per capita and carbon price. In 2021, the estimated carbon value for Brazilian agriculture 
using quantile regression was USD 11.54/tCO2e. It is therefore critical that scientifically robust carbon pricing 
methodologies be applied to agriculture to serve as benchmarks for national environmental valuation systems.

Keywords: agriculture, carbon pricing, CO2 emissions.

Resumo: A precificação do carbono envolve a atribuição de um valor monetário às emissões de gases de 
efeito estufa. Este artigo realizou uma revisão sistemática sobre preços do carbono na agricultura mundial 
nos últimos 20 anos. Partindo de uma revisão sistemática da literatura, os métodos de valoração e os preços 
atribuídos ao carbono foram correlacionados a um conjunto de determinantes identificados em publicações 
acadêmicas e extrapolados para o contexto da agricultura brasileira. Constatou-se variação nos preços do 
carbono (mínimo de USD 2,6/tCO2e e máximo de USD 157,5/tCO2e) com diferentes variáveis socioeconômicas, 
agrícolas e ambientais determinando o preço do carbono. Os resultados revelaram correlação negativa entre 
o Produto Interno Bruto (PIB) per capita e as emissões de CO2 per capita, indicando elevada elasticidade 
das emissões em resposta às mudanças na precificação do carbono. Além disso, observou-se associação 
positiva entre o uso de fertilizantes nitrogenados per capita e o preço do carbono. Em 2021, o valor do 
carbono estimado para a agricultura brasileira com o uso de uma regressão quantílica foi de USD 11,54/tCO2e. 
Ressalta-se a importância do uso de metodologias cientificamente robustas para a precificação do carbono na 
agricultura, a fim de servir como referência para os sistemas nacionais de valoração ambiental.

Palavras-chave: agricultura, precificação do carbono, emissões de CO2.

1. Introduction

Carbon pricing mechanisms and frameworks such as marginal abatement cost (MAC), shadow 
price and social cost can provide key parameters for setting greenhouse gas emission reduction 
targets. Institutions can transition to a low-carbon economy by internalizing carbon values. 
Carbon value estimates can also be embedded in economic models and internal corporate pricing 
frameworks to guide the design of abatement proposals (Hafstead et al., 2021; Ranson, 2020).
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In 2021, agricultural activities contributed to 16.2 billion metric tons of CO2e emissions 
globally, a 10% rise since 2000. Carbon dioxide made up 50%; methane, 32%; nitrous oxide, 
14%; and fluorinated gases, 3% (Food and Agriculture Organization of the United Nations, 
2023). Livestock, particularly through manure management and enteric fermentation, was 
responsible for nearly 80% of these emissions. Rice cultivation also significantly contributed 
to methane emissions. Some agricultural practices, such as improved livestock management 
and fertilizer adjustments, can sequester carbon and reduce emissions (Tang et al., 2016b; 
Bonesmo et al., 2012). Brazil is a major greenhouse gases (GHG) emitter due to land-use changes 
and enteric fermentation in livestock (Estevam et al., 2023). The country also leads in pesticide 
consumption, 0.72 million metric tons, which accounts for 20% of the total global consumption. 
Reducing chemical use through organic agriculture could reduce emissions while maintaining 
food security. Brazil’s RenovaBio and ABC+ Plan promote sustainable, low-carbon agriculture, 
in line with the emissions targets of the Paris Agreement (United Nations, 2020).

The research problem addressed in this paper is how commonly mentioned factors influence 
the value of carbon in the agricultural sector. In order to try and solve the carbon pricing issue in 
agriculture, this paper attempts to identify valuation methods, carbon prices and their determinants 
in worldwide agriculture between 2004 and 2024, as well as to model Brazilian agriculture’s 
carbon price. The literature on carbon pricing in Brazil did not seem to put much emphasis on 
the pricing itself, but rather sought to uncover aspects more related to low-carbon agriculture 
and aspects related to carbon pricing determinants (Gurgel & Laurenzana, 2016; Gouvello et al., 
2010; Carvalho et al., 2022). This article addresses this gap by systematically integrating carbon 
pricing, and applying the combined results of the systematic review to the Brazilian economy. 
Furthermore, given the lack of a reference value for the price of carbon in Brazilian agriculture, 
this study provides a practical basis for the development of specific policies and strategies that 
will help guide the implementation of low-carbon practices in the agricultural sector.

The review of existing methodologies provided a broad context for the study and helped to 
understand how carbon prices have been estimated globally. Given the heterogeneity of these 
methodologies, a quantile regression approach was adopted. The combination of the carbon 
prices obtained in the systematic review with the modeling of the data has been carried out 
through meta-analyses such as the one performed by Tol (2024). For the Brazilian case, the 
work of Campoli & Feijó (2022) stands out. This is an accepted procedure, especially in the fields 
of health, economics and environmental sciences. Once the problem of data heterogeneity 
is overcome, the procedure makes it possible to apply the results to different contexts and 
predict how the phenomenon may behave in new situations (Malange, 2015).

Carbon valuation systems involve governmental and institutional elements that interact 
through valuation methods, carbon prices, regulatory policies, and country-specific dynamics. 
The EU Emissions Trading System (EU ETS), for example, caps emissions, affects carbon prices, 
and encourages low-carbon investments (Grosjean, 2017). Factors such as income levels, CO2 
emissions, and the economic role of agriculture can affect carbon prices. Institutions such as 
the IPCC and World Bank initiatives such as the Carbon Pricing Leadership Coalition (CPLC) are 
critical in shaping carbon policies and markets.

2. Theoretical Foundation

Voluntary or regulated carbon markets have different advantages for each type of carbon 
pricing system. Marginal Abatement Cost (MAC) curves, integrated methodologies and optimization 
and programming models are some relevant examples in this context (Wang, 2015). In the case 
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of voluntary pricing markets for carbon emissions, it may be an option for companies to include 
them as environmental commitments or corporate social responsibility obligations. In regulated 
pricing markets, government policies play a central role in setting carbon prices with the aim 
of achieving emission reduction targets. The use of integrated methods and shadow pricing 
allows for an understanding of the impacts of climate change and environmental externalities 
(Tang, 2016; Wang et al., 2022).

2.1 Carbon pricing models

Integrated assessment models (IAMs) are often used to calculate social cost of carbon, which 
takes into consideration a variety of factors, such as greenhouse gas emissions, climate impacts, 
adaptation costs, impacts on agricultural production, human health, and others (Nordhaus, 
2017). The social cost of agricultural carbon in IAMs could be obtained by decomposing its 
contribution to total greenhouse gas emissions. According to the study conducted by Anthoff et al. 
(2011) on 16 global regions using the FUND model for the Climate Framework for Uncertainty, 
Negotiation and Distribution, the distribution of the social cost of carbon across sectors is a 
function of the rate of time preference. The magnitudes of cooling and agriculture are almost 
similar, with respect to integrated models for general equilibrium or partial equilibrium problem 
formulations. Their magnitudes are -6.5/tCO2e and 6.8/tCO2e at a 3% discount rate, respectively. 
But environmental IAMs are the most common instrument that could be found for assessing 
economic policies with respect to the environment (Anthoff et al., 2011).

Studies on carbon pricing in Brazil are limited to agriculture. The economic impact of adopting 
mitigation technologies was analyzed by Gurgel & Laurenzana (2016) in a computable general 
equilibrium framework for the time horizon 2015 to 2030. The adoption of one of the no-till 
practices would contribute the most to reducing CO2e emissions to 16 Mt in the cropland 
category if carbon were priced at USD 0.25/tCO2e. On their turn, emissions from the livestock 
category would be reduced by 104 MtCO2e at a carbon price of USD 7.85/tCO2e. For agriculture, 
the average mitigation cost was US$ 5.41/tCO2e (average for agriculture in 2017 converted to 
2021 prices). Another computable general equilibrium study was that of Carvalho et al. (2022), 
which, although it did not single out a specific value for agriculture, showed that the introduction 
of carbon prices between R$ 10 and R$ 2,000 (USD 1.85 and USD 371 at 2021 prices) would 
produce greater reduction in emission volumes in livestock production.

The approach to carbon pricing based on the MAC curve illustrates the marginal cost of an 
additional unit of pollution reduction relative to total pollution in a country/sector. McKinsey 
& Company (2009) estimated abatement costs in Brazil’s agricultural sector, and are leading 
in-depth research on abatement costs for different types of GHG mitigation technologies. 
They have identified GHG reduction opportunities in a number of sectors in Brazil in 2030, 
with implications for technologies and practices that could be adopted globally to reduce 
emissions. One of the largest sources of GHG emissions in the agricultural sector is livestock 
production, mainly as a result of residues on pastures and enteric fermentation by the animals. 
The amount of marginal costs related to various projects implemented in agrarian activities 
was quite insignificant and estimated at the level of approximately € 2 per ton of CO2 in 2007 
(USD 5.37 at 2017 prices adjusted to 2021 values) as estimated by McKinsey & Company (2009).

Other methods include pricing using the shadow price while setting parameters for optimization/
linear programming analyses. In particular, the shadow price of CO2 refers to the forgone benefits 
received from reducing one extra unit of CO2 emission under given technology constraints. 
The productive micro-efficiency model usually looks at the overall reduction potentials of CO2 
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emissions balancing out technological aspects and complex economics. It examines a variety 
of production aspects while trying to understand changes in terms of producing fewer CO2 
particles than before, therefore allowing the measurement of the associated opportunity cost. 
In 2016, Yamamoto et al. (2022) conducted a study on carbon tax policies and their impact 
on the agribusinesses in Vietnam using a multi-product system including rice, livestock and 
aquaculture. Farmers operating within the Mekong Delta area recorded lower technological 
efficiency levels compared to those found elsewhere, yet they had a lower shadow price for GHG 
emissions. The author estimated an average shadow price of USD 14.5/tCO2e for Vietnamese 
agriculture using a production directional distance function. In the Belt and Road Initiative 
countries, there were significant variations in carbon shadow prices’ dynamics in agriculture, as 
observed by Wang et al. (2022). During the period of 2000 to 2019, most countries experienced 
a decrease while only few countries had an increase in carbon price. This general decrease 
indicates technological progress in carbon abatement within BRI countries. In this line, Mongolia, 
Vietnam, India, Yemen, Nepal, The Philippines, Indonesia, and Myanmar had high average 
annual growth rates in their agricultural carbon shadow prices, revealing escalating difficulties 
in mitigating agricultural carbon emissions, especially considering their relatively low level of 
economic development. Conversely, the remaining 32 countries experienced different degrees 
of decreases in terms of agricultural carbon shadow prices. In China and Russia and Kyrgyzstan 
together with Lebanon significant annual average declines, ranging from 29.9%, 18.45%, 17.43% 
to 17.09% respectively, were noticed. Additionally, central eastern European nations such as 
Croatia, Georgia, Greece and Estonia experienced significantly lower annual average declines 
ranging from 12.32% to 14.65%. Other similar studies include those of Wang et al. (2022), 
Guan et al. (2018) for China, and by Tang et al. (2016b) for Australia.

Biophysical processes include agricultural simulation models that focus on optimization 
and linear programming. In general, a combination of biological and economic data is used 
along with environmental information to study the impact of different agricultural practices 
on climate change and agricultural performance. In particular, the study by Gouvello et al. 
(2010) investigated the transition from a high to low carbon economy in Brazil, focusing more 
on the agricultural sector. In this regard, the simulation was carried out using a georeferenced 
model that evaluated different mitigation and carbon sequestration options proposed within 
the particular scenario considered. The study identified a potential reduction of 302 million 
tons of CO2e by 2030 at USD 6/tCO2e (2017 prices, adjusted to 2021 values) on MAC curves for 
technologies used in different sectors over the period between 2010 and 2030. This reduction 
resulted from the combined adoption of practices to reduce deforestation and intensify 
livestock production. Thus, these results suggest that the adoption of these measures would 
be an effective GHG mitigation strategy for the agricultural sector.

2.2 Determinants of carbon pricing in agriculture

Pricing models generally take into account various factors that affect the value of carbon, 
which may be used as a reference for climate change mitigation policies. In agriculture, these 
determinants may vary by region, crop type, and the specific characteristics of each agricultural 
system. In the current literature, GHG emissions are one of the principal factors influencing 
carbon valuation. Tang  & Wang (2023) showed negative relationship between taxing emissions 
and the level of CO2e emissions in China in 2022. With an emission tax rate of ¥50/tCO2e (USD 
7.05/tCO2e), emissions were reduced by 8% compared to the baseline scenario. Doubling this 
rate would reduce agricultural emissions by 17% relative to the baseline. Raihan et al. (2023) 
showed that a 1% increase in agricultural value added is associated with a reduction in CO2 
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emissions of 1.37% in the long term and 0.65% in the short term. However, GDP and energy 
consumption were found to have a positive and statistically significant impact on CO2 emissions. 
The study identified an inverted U-shaped relationship between economic growth and pollution, 
as evidenced by the positive coefficient of GDP and the negative coefficient of GDP squared, 
thus supporting the validity of the Environmental Kuznets Curve (EKC) hypothesis.

In the context of agricultural inputs affecting carbon prices, Baccour et al. (2021) conducted 
an evaluation of measures to improve nitrogen efficiency and reduce nitrogen loads to air 
and water. The authors focused on the effectiveness of the N optimization measure, which 
resulted in a significant abatement of about 0.3 MtCO2e at negative cost in 2014. In addition, 
the N optimization measure provides benefits to farmers by reducing their private costs and 
substituting manure fertilization by synthetic fertilization. Studies addressing the shadow price 
place great emphasis on production factors (capital, labor, and land) as determinants of carbon 
value (Burke et al., 2019; Guan et al., 2018; Yamamoto et al., 2022). However, Wang et al. (2014) 
comment that countries experiencing an increase in the shadow price of agricultural carbon 
are drawing lessons from advanced emission reduction technologies and practices, gradually 
reducing their reliance on material factors of production while increasing the contribution 
of nonmaterial factors of production to agricultural progress. A notable example is China’s 
proactive adoption of environmental technologies. China attaches great importance to technical 
cooperation with Israel in desertification control and water-efficient irrigated agriculture.

On the other hand, in the realm of carbon market equilibrium, the price of carbon credits is 
strongly influenced by the emissions reduction target set. According to Bakam et al. (2012), the 
price of carbon remains low because farmers contributing carbon credits to the market have 
achieved emission reductions at a relatively low cost by using their cheapest abatement options. 
However, as reduction targets increase, the price of carbon rises sharply and more and more 
farmers become buyers of carbon credits, as farmers are forced to resort to more expensive 
abatement measures to meet these targets. Conversely, when reduction targets are set at lower 
levels, the supply of carbon credits exceeds demand. This is because most farmers can meet their 
obligations using available technology, resulting in a surplus of carbon credits on the market.

3. Methodology

The systematic review included publications that addressed carbon pricing methodologies in 
agriculture, limited to emissions from crops and livestock, with inclusion and exclusion criteria 
based on the PRISMA methodology (2020). The research methodology was developed in two steps. 
First, a comprehensive review of the literature on carbon pricing in agriculture was conducted. 
The second step was to assess how these prices are determined, followed by modeling carbon 
price for Brazilian agriculture. Methodological procedures similar to those proposed in this study 
were also employed in the research conducted by Wang et al. (2019) and Kumara et al. (2023).

3.1 Step 1 - Systematic Literature Review

The research included publications from January 2004 to January 2024, the last 20 years. The 
databases used were Science Direct, Web of Science, Springer, Wiley Online and Google Scholar. 
The keywords used in the database search covered the different methodologies used to assess 
carbon in agriculture. In the indexed journals, the search made use of Boolean search engines: 
TITLE-ABS-KEY (“carbon pricing” AND “agriculture” OR “abatement costs” AND “agriculture” 
OR “shadow price” AND “agriculture” OR “integrated assessment models” AND “agriculture”) 
AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”)) AND (LIMIT-TO (SRCTYPE, “j”)). In 
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Google Scholar, the query was made using the advanced query tool with Boolean operators in 
Portuguese and English: carbon pricing in agriculture (precificação do carbono na agricultura); 
integrated assessment models in agriculture (modelos de avaliação integrados na agricultura); 
marginal abatement cost (MAC) in agriculture (custo marginal de abatimento na agricultura); 
social cost of carbon (SCC) in agriculture (custo social do carbono na agricultura); shadow price 
of carbon in agriculture (preço sombra do carbono na agricultura).

The systematic review followed the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses – PRISMA – (Page et al., 2021). Table 1 summarizes the inclusion and exclusion 
criteria of the systematic review and the quantification of the search results. The initial search 
yielded 89 publications (Figure 1). A spreadsheet was developed to organize the data and 
ensure that all publications met the specified criteria, incorporating details such as source, 
publication type, title, year, authors, country, analysis period, sector/activity, segment, study 
level, methodology, variables analyzed, average agricultural carbon price, and abstract notes. 
After eliminating duplicate files (9 publications), 80 publications remained listed for evaluation. 
In case of disagreement on any of the criteria, consensus was reached through discussion. The 
included publications were reviewed and documented several times. Exclusions resulted in 70 
publications for analysis. Based on an analysis of the title and abstract of the document, the full 
text was then assessed for eligibility, leaving 44 publications for an initial descriptive statistical 
analysis. From this total, 12 publications were excluded because they contained data on carbon 
prices at a global/regional level, resulting in a set of 32 publications with carbon values broken 
down by country. In Brazil in particular, only three studies were found that quantified carbon 
prices in agriculture within the analysis period.

Figure 1. PRISMA 2020 flow diagram. Source: Prepared by the authors based on Page et al. (2021).
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Table 1. Reasons for exclusion.

Number Reason for exclusion Register

1 Lack of prices for agriculture in general 10

2 Literature review only 5

3 Very specific segment of agriculture, not reporting values for crops and 
livestock in general

4

4 Inclusion of additional sectors such as forestry 3

5 Pricing in terms of carbon sequestration 2

6 Metric incompatibility 2

7 Data not disaggregated by country, only in global/regional terms 12

Source: Prepared by the authors

In order to standardize the values for the same year, the carbon prices were converted to base 
year values and then adjusted for the year 2021 by a price index based on the annual variation 
of inflation in each country, according to the International Monetary Fund (2022). The base year 
used was 2017, as the information for GDP per capita measured in Purchasing Power Parity 
(PPP) also refers to that year (World Bank, 2022).

3.2 Step 2 - Analysis of carbon price determinants and modeling carbon price for 
Brazilian agriculture

The combination of carbon prices and variables obtained in the systematic review with the 
modeling of data specific to the Brazilian context constitutes an extrapolation meta-analysis. 
This methodological approach has been used in various fields, with a highlight to the work of 
Tol (2024). It also allows the combined results to be used to predict how the phenomenon may 
manifest itself in new contexts or situations (Campoli & Feijó, 2022). In this type of analysis, the 
sensitivity of estimates largely depends on the consistency of the included studies (Malange, 2015). 
To prevent variation in the context of the studies from affecting the precision of the combined 
estimates, robustness tests and sensitivity analyses were used to assess how the estimates vary 
when different studies or subgroups of data are included or excluded from the analysis.

The information obtained from the systematic literature review (step 1) was supplemented 
with a set of data to identify the determinants of carbon prices in the countries targeted by 
the studies. Studies employing the MAC curve have theoretically supported the selection of 
agronomic variables, such as fertilizers, pesticides, and machinery usage. In contrast, studies 
utilizing integrated models have placed greater emphasis on variables related to GDP, including 
the contribution of agriculture to GDP and the proportion of agricultural land. In all studies, the 
variables related to carbon cycle (CO2 emissions) and territorial expansion (agricultural area) 
stood out. Table 2 shows the variables, their source and description.

The study organized variables into dependent and explanatory categories to construct 
a regression model examining their relationships. Explanatory variables for carbon pricing 
were obtained from the World Bank, FAO, and USDA, while carbon prices were derived from 
a systematic literature review. Precision in assigning explanatory variables over the relevant 
periods was crucial. Data were structured in a cross-sectional format, encompassing Australia, 
Brazil, Canada, China, India, Ireland, Scotland, Spain, the United Kingdom, the United States, 
and Vietnam.
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Table 2. Variables selected for the analysis of determinants.

Variable Source Description

Dependent variable
Carbon price (USD/tCO2) Systematic review Systematic literature review, based on 

Science Direct, Web of Science, Springer, 
Wiley Online and Google Scholar.

Explanatory variable
GDP (PPP) – constant prices 
2017 (USD/cap/yr)

World Bank (2022) GDP is gross domestic product 
converted to international dollars using 
constant 2017 purchasing power parity 
(PPP) rates.

Share of agriculture in GDP (%) Food and Agriculture 
Organization of the United 
Nations (2021)

Agriculture, forestry, and fishing, value 
added (% of GDP).

Share of employment in 
agriculture (%)

Food and Agriculture 
Organization of the United 
Nations (2021)

Percentage of the total workforce 
employed in agriculture.

Share of agricultural land (%) Food and Agriculture 
Organization of the United 
Nations (2021)

Share of land area that is arable, 
under permanent crops, and under 
permanent pastures.

Emissions of CO2e in 
agriculture (kg/cap/yr)

Food and Agriculture 
Organization of the United 
Nations (2021)

The FAOSTAT domain emissions totals 
disseminate information estimates of 
greenhouse gas (GHG) emissions in 
CO2e, measured in kilotons. The latter 
are computed by using the IPCC’s Fifth 
Assessment Report on global warming 
potentials, AR5.

Fertilizer use – Nutrient 
nitrogen N – (kg/cap/yr)

Food and Agriculture 
Organization of the United 
Nations (2021)

Data are provided for the three 
primary plant nutrients: nitrogen (N), 
phosphorus (expressed as P2O5) and 
potassium (expressed as K2O).

Pesticide use (kg/cap/yr) Food and Agriculture 
Organization of the United 
Nations (2021)

The pesticides database includes 
data on the use of major pesticide 
groups (insecticides, herbicides, 
fungicides, plant growth regulators and 
rodenticides).

Livestock manure (kg/cap/yr) Food and Agriculture 
Organization of the United 
Nations (2021)

Amount excreted in manure (N 
content).

Machinery use per 1,000 ha of 
agricultural land

United States Department 
of Agriculture (2019)

Machinery use is measured in units 
of horsepower. This is divided by total 
agricultural land to deliver average farm 
machinery per unit of agricultural land.

Source: Prepared by the authors.

Normalization to a logarithmic scale (excluding percentage-scaled variables) aimed to stabilize 
variance for robust statistical analysis. Descriptive and exploratory analyses examined data 
distribution, central tendencies, dispersion, and inter-variable correlations. Given the non-uniform 
variability of the data, quantile regression was chosen to examine how different quantiles 
of the dependent variable relate to the independent variables. This allows the relationship 
between variables to be examined not only at the mean, but also at different quantiles of the 
distribution of the dependent variable (Alsayed et al., 2020). This is particularly useful in this 
study, as it allows for the variability of effects to be captured and to understand how factors 
influence both the low and high values of the different contexts.
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The advantages of using quantile regression include greater robustness in the presence of 
outliers and heteroscedasticity, and less sensitivity to the normality of the errors. The assumptions 
of quantile regression include the linearity of the relationship between the independent variables 
and the specific quantile of the dependent variable, the independence of the residuals, and the 
conditional distribution with respect to the selected quantile. The associated limitations are the 
sensitivity to extreme outliers and the greater difficulty in interpreting the results of the quantiles 
(Alsayed et al., 2020). The 0.5 (median) quantile used divided the distribution into two parts, with 
50% of the data below and the other 50% above this value. The quantile regression model with 
carbon prices as the dependent variable and nine explanatory variables is given by Equation 1:

2 1 2 3 4 5 6 2  7 8 9 10          CO P lnGDP agri emp land lnCO lnfert lnpest lnliv lnmachβ β β β β β β β β β ε= + + + + + + + + + + 	 (1)

The dependent variable is carbon price and the explanatory variables are lnGDP: natural 
logarithm of GDP per capita; Agri: share of agriculture in GDP; Emp: share of employment in 
agriculture; Land: share of land used for agricultural activities; lnCO2: natural logarithm of CO2 
emissions per capita; lnfert: natural logarithm of fertilizer use per capita; lnpest: natural logarithm 
of pesticide use per capita; lnliv: natural logarithm of nitrogen excreted in animal manure per 
capita; lnmach: natural logarithm of machinery use per 1,000 ha of agricultural land; ε : random 
error with zero mean and variance σ2. After identifying the model with the best fit, the regression 
coefficients were extrapolated to Brazilian agriculture. As mentioned by Wooldridge (2023), the 
predicted values of a variable of interest may be estimated based on the data observed for 
other independent variables. This is done by multiplying the values of the variables for Brazilian 
agriculture by the corresponding coefficient in the regression model and adding the intercept, 
if any. It is important to clarify that methods such as the marginal abatement cost curve and 
general equilibrium models are well-established tools for carbon pricing. Quantile regression, on 
the other hand, is not a carbon pricing method, but a statistical technique that analyzes different 
quantiles of the conditional distribution of variables and allows to extrapolate values to the Brazilian 
reality1. The models were tested using the Schwarz (BIC), Akaike (AIC) and Hannan-Quinn (HQC) 
criteria to assess the quality of the model and to help choose between different fitted models. 
Lower AIC and BIC values indicate better models, balancing fit and simplicity, with BIC penalizing 
complexity more. HQC also helps avoid overly complex models, but with a lower penalty than 
BIC. In addition, the quantile regression was fitted to assess the sensitivity of the model to the 
presence of heteroscedasticity using the Breusch-Pagan and White tests. The former checks 
whether the residual variance remains constant with respect to the independent variables, while 
the latter detects heteroscedasticity without assuming a specific variance form for the residuals.

4. Results and Discussion

4.1 Analysis of data from the systematic literature review

Figure  2 shows the distribution of publications by research source (Figure  2a), country 
(Figure 2b), year of publication (Figure 2c) and research method (Figure 2d) for the 32 publications 
evaluated. Regarding the sources of publications (Figure 2a), 7 journal publications came from 
Science Direct, 6 from Google Scholar, 3 from Web of Science, 3 from Wiley Online and 2 from 
Springer. All documents (8) and theses (3) came from Google Scholar. The systematic review 
procedure, based on the evaluation of indexed scientific journals and supplemented by the 
inclusion of studies identified through Google Scholar, ensured a more comprehensive approach 

1	 The dashboard of research data developed by Embrapa Territorial (2024).
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to the synthesis of evidence on carbon pricing in agriculture. Regarding the publication origins 
depicted in Figure 2b, notable contributors include China, Australia, and the United Kingdom, 
accounting for a substantial portion of publications (31%, 19%, and 16%, respectively). Following 
closely are Brazil (9%), Ireland, and the United States (6%), along with Canada, India, Spain, 
and Vietnam (3%). China, being a prominent global agricultural producer, confronts significant 
environmental hurdles and has directed attention towards carbon pricing as a means to promote 
sustainable agricultural methods and diminish GHG emissions within the agricultural domain. 
Similarly, Australia, with its vast expanse of agricultural land, has stood out in this literature. 
Both countries have implemented an emissions trading system (ETS) and a crediting mechanism, 
while the United Kingdom has also implemented carbon taxes as compliance instruments. 
Regarding the period of analysis (2004 to 2024) (Figure 2c), there was a peak of production 
between 2016 and 2019, corresponding to 50% of the publications studied. The remaining 
publications were spread over the remaining years, and the search strategy did not identify 
any publications on the topic between 2004 and 2008. In some research areas, there may be 
periods when there is a relative dearth of scientific publications due to a variety of factors, 
such as limited interest from the academic community, or a lack of significant advances in the 
field. McManus et al. (2023) examined the various factors that influence the citation impact of 
scientific papers in different countries, such as funding and the progression through authorial 
decisions, such as collaboration and choice of publication venue (open access, journal quartile, 
language). The authors hypothesized that many countries may follow different publication 
trajectories influenced by the resources available to them, resulting in different impact metrics. 
These factors may affect the availability and quantity of publications found by a search strategy.

Among the identified methodologies (Figure 2d), studies using the MAC curve (34%) and 
shadow price of carbon (31%) were prominent. Programming and optimization comprised 25% 
of the studies, while integrated models focused on agriculture and IAMs accounted for 9%. The 
literature includes a variety of pricing methodologies, such as top-down, bottom-up, or hybrid 
approaches. Bottom-up approaches emphasize mitigation costs and implementation, while 
top-down approaches focus on economic feedbacks and welfare costs, and hybrid approaches 
combine both perspectives (Moran et al., 2011; Eory et al., 2018; Tang et al., 2016a; Vermont 
& Cara, 2010). The classification of methodologies aimed to create a structured framework, 
though overlaps were common, especially in studies calculating MAC as the shadow price of 
emissions constraints. Figure 3 displays a histogram of carbon prices in agriculture, and shows 
19 publications with prices below USD 50/tCO2e, 11 between USD 50/tCO2e and USD 100/
tCO2e, and 2 above USD 100/tCO2e. The distribution was not perfectly normal due to varying 
estimation methods contextualized for each country from 2004 to 2024.

This diversity of data also suggests that there is a great deal of variability in carbon prices, 
even for a single country. The most emblematic example is China, with a minimum price of USD 
2.59/tCO2e and a maximum price of USD 157.50/tCO2e, both estimated using the shadow price 
method, but with other additional values using different methods (MAC, integrated models, 
optimization/programming). In 2021, China reached an important milestone in its climate policy 
by launching its national carbon emissions trading market. Despite this achievement, the market 
currently covers only the energy sector (electricity and heat generation). Price variability in the 
agricultural sector due to different pricing methodologies creates an opportunity for carbon 
market regulation, as explored by Zhu et al. (2023) in their study of the Yangtze River Delta 
region of China. Establishing guidelines that promote comparability between carbon pricing 
systems in different regions and within the same country may promote a more harmonized 
approach to dealing with climate change on a global scale.
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Figure 2. Distribution of publications by research source (a), country (b), year of publication (c) and 
research method (d) in the 32 publications analyzed. Source: Elaborated by the authors.

Figure 3. Histogram of carbon price in agriculture. Source: Elaborated by the authors.
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4.2 Analysis of the carbon prices determinants

This section provides an assessment of some of the determinants of carbon prices identified 
through the systematic literature review of the 32 publications analyzed and extracted from 
institutional statistical sources. Figure 4 illustrates the frequency of occurrence of the variables 
contemplated by the publications between 2004 and 2024. The variables with the highest 
frequency were greenhouse gas emissions (21.2%), fertilizers (8.7%), abatement costs (6%), land, 
machinery and equipment (4.9%), and livestock and gross domestic product (4.4%). This frequency 
distribution of the variables helped in the selection of the determinants to be analyzed together 
with the carbon price level. Table 3 shows the descriptive statistics for this set of variables, 
namely GDP per capita, share of agriculture in GDP, share of employment in agriculture, share of 
agricultural land, agricultural CO2e emissions per capita, fertilizer use per capita, pesticide use per 
capita, livestock manure per capita, machinery use. A first piece of evidence is the difference in 
standard deviation between the variables. GDP per capita measured in PPP was the variable with 
the highest standard deviation (USD 22,990/cap/yr), with a minimum value of USD 6,736/cap/yr 
(India), and a maximum value of USD 93,997/cap/yr (Ireland), reflecting differences in their levels 
of economic development and income distribution. Another variable showing high standard 
deviation was the level of agricultural CO2e emissions (1,69 kgCO2e/cap/yr), with a minimum of 
0.36 kgCO2e/cap/yr (China) and a maximum of 4,83 kgCO2e/cap/yr (Ireland). Ireland, with its very 
small population (5,033,164 inhabitants), ended up with higher per capita emissions than China, 
which had the largest population in 2021 and the same level of absolute CO2e emissions from 
agriculture. The per capita assessment provides a comparison between economies with different 
population sizes and production structures, and India’s per capita agricultural emissions are very 
similar to those of the Chinese economy. A second piece of evidence points to differences in 
the dynamics of agriculture at the global level. In the 32 publications reviewed, countries varied 
significantly in their economic and social dependence on agriculture, as reflected in the share 
of agriculture in GDP, employment, and land area. While some countries had a relatively high 
share of agriculture in their economies, others had a more modest presence. Despite lower 
shares of GDP and employment, some countries retain a high percentage of land area devoted 
to agriculture, which suggests that the sector remains important in terms of natural resources 
use and agricultural landscape. This is reflected in the average share of agricultural land, which 
at 51.95% is higher than the other shares in Table 3.

Figure 4. Frequency of variables in publications (%). Source: Elaborated by the authors.
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Table 3. Descriptive statistics for carbon price and drivers in 2021.

Variable Mean Median SD Min Max

Carbon price (USD/tCO2e) 41.96 42.83 32.45 2.59 157.50

GDP (PPP) – constant prices 2017 (USD/cap/yr) 39,130 42,260 22,990 6,736 93,977

Share of agriculture in GDP (%) 4.82 2.84 4.17 0.56 16.73

Share of employment in agriculture (%) 12.30 4.42 13.17 1.00 42.86

Share of agricultural land (%) 51.95 55.50 14.64 6.47 72.94

Emissions of CO2e in agriculture (kg/cap/yr) 1.69 0.69 1.70 0.36 4.83

Fertilizer use (kg/cap/yr) 58.02 39.26 36.67 20.78 140.30

Pesticide use (kg/cap/yr) 0.92 0.39 0.84 0.04 2.52

Livestock manure (kg/cap/yr) 48.25 19.67 53.82 7.05 149.80

Machinery use per 1,000 ha of agricultural land 3.16 1.68 3.12 0.22 7.90

Source: Carbon price was obtained from systematic literature review. Other variables were obtained from World Bank 
(2022), Food and Agriculture Organization of the United Nations (2021), United States Department of Agriculture (2019), 
International Monetary Fund (2022).

There was also variation in the adoption of agricultural practices. The use of livestock manure 
and fertilizer showed standard deviation of 53.82 kg/cap/yr and 36.67 kg/cap/yr, respectively. 
This variation may be influenced by differences in farming systems, as some economies use 
more livestock manure as an organic fertilizer, while others rely more on chemical fertilizers. 
Certainly, this issue highlights the importance of tailored and context-specific approaches to 
promote agricultural sustainability and mitigate environmental impacts. Figure 5 shows an 
exploratory analysis of the relationship between carbon prices, GDP per capita, and CO2e 
emissions per capita between 2004 and 2021. The same country appears more than once, 
because there is more than one publication for the same country. Regarding the price of 
carbon and the level of CO2e emissions per capita in agriculture, Figure 5a is divided into four 
quadrants, intersected by an average on the vertical axis (value of USD 41.96/tCO2e) and on the 
horizontal axis (emissions of 1,70 kgCO2e/cap/yr). The same country appears more than once, 
because there is more than one publication for the same country. The first quadrant contains 
articles whose countries have carbon prices and emissions below the average for the set of 
publications, including publications about China and Vietnam. The second quadrant contains 
publications about countries that have below-average carbon prices but above-average CO2e 
emissions per capita, including Australia, Brazil, and Ireland. The third quadrant contains 
publications with above-average carbon prices and low emissions, again including China, but 
also India, Scotland, the UK, the US and Canada. Finally, the last quadrant featuring high carbon 
prices and high emissions per capita includes Australia and Ireland. With the exception of China, 
Australia and Ireland, there is a clear tendency for developed countries to have higher carbon 
prices and lower CO2 emissions per capita than developing countries. In Figure 5b, as a function 
of GDP per capita measured in PPP, all developed countries were placed in the two quadrants 
showing levels above the average of USD 39,130 cap/yr, and carbon prices in the average of 
USD 41.96/tCO2e. In contrast, developing countries were positioned in the low GDP per capita 
quadrants, with carbon prices above and below the average for the set of publications. Thus, 
there is more variability in the data when we consider carbon prices and GDP per capita than 
when we consider prices and CO2 emissions per capita. This would indicate the influence of 
these two variables on carbon prices, which can be confirmed by a regression analysis.
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4.3 Carbon pricing modeling for Brazilian agriculture

After a comprehensive understanding of pricing methodologies and carbon price determinants, 
an estimate of carbon prices in Brazilian agriculture was sought. This was done using quantile 
estimation based on loss function minimization to minimize the heterogeneity of the verified 
methods, extrapolating the coefficients to Brazil. Table 4 shows statistical results for different 
quantiles of the conditional distribution of the dependent variable (carbon price). Model 1 
showed the best fit, since the three criteria based on the likelihood function (Schwarz, Akaike 
and Hannan-Quinn) were lower when compared to the other models. Seven of the nine variables 
tested showed statistical significance (p-value < 0.001), with the exception of the variables 
natural logarithm of the amount of nitrogen excreted in animal manure per capita (lnliv) and 
natural logarithm of the use of machinery per 1,000 ha of agricultural land (lnmach). The tests 
performed to identify heteroscedasticity in quantile regression (Breusch-Pagan and White) did 
not show significant evidence of non-constant variability in the residuals. The test results were 
not statistically significant, thus indicating that heteroscedasticity is not a significant problem 
for the fitted model (model 1). The other models did not show satisfactory statistical fits.

Figure 5. Relationship between carbon price and agricultural emissions (a) and carbon price and 
GDP per capita (b) Source: Carbon price was obtained from systematic literature review. Agricultural 

CO2 emissions and GDP PPP were obtained from World Bank (2022), Food and Agriculture Organization 
of the United Nations (2021) and International Monetary Fund (2022), Gillingham & Stock (2018), 

Davies, (2016), Han & Chen (2022), Macleod et al. (2010), Tang et al. (2016b, 2018, 2021), Thamo et al. 
(2013), Breen & Donnellan (2009), Eory et al. (2015).

Table 4. Quantile regression results.

Variable Model 1 Model 2 Model 3 Model 4
Constant 290.863 (8.75) *** 55.343 (195.31) -35.649 (106.67) 276.005 (45.42) ***
lnGDP -21.470 (0.90) *** -25.319 (19.58) 19.057 (5.93) *** -63.002 (11.33)
lnCO2 -19.457 (0.42) *** 44.342 (25.35) * -31.245 (18.66) 26.502 (6.85) ***
lnfert 19.900 (0.63) *** 39.885 (16.31) ** 19.031 (10.82) * -5.290 (3.42) ***
lnpest 3.751 (0.52) *** -42.591 (10.83) *** -6.715 (5.52)
Agri -6.184 (0.19) *** -11.454 (4.16) **
Emp 0.698 (0.03) *** 0.0775 (0.73)
Land 1.063 (0.02) *** -0.0620 (0.55)

Source: Elaborated by the authors. *** p-value < 0.001 ** p-value < 0.01 * p-value < 0.05. The standard errors are in 
parentheses.
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Variable Model 1 Model 2 Model 3 Model 4
lnliv -55.810 (23.34) ** 5.522 (14.75) 30.155 (8.20) ***
lnmach -19.403 (6.96) ** -1.583 (5.03) -5.887 (3.18) *
Criterion
Schwarz 321.963 324.113 322.509 324.744
Akaike 310.237 311.456 312.248 315.950
Hannan-
Quinn

314.124 314.314 315.649 318.865

Price for Brazil (Model 1) – USD 11.54/tCO2e
Source: Elaborated by the authors. *** p-value < 0.001 ** p-value < 0.01 * p-value < 0.05. The standard errors are in 
parentheses.

The results showed that GDP (lnGDP) is negatively correlated with carbon estimates, 
indicating that as this variable increases, there is less of a tendency to value carbon. Thus, 
countries with higher GDP economies have a lower abatement curve, and a 1% increase in 
GDP reduces the carbon price by USD 0.2147/tCO2e. The estimated coefficient on carbon 
emissions has a negative sign: a 1% increase in CO2 emissions per capita reduces the carbon 
price by USD 0.1945/tCO2e. In economies in which CO2 emissions tend to be higher, carbon 
price values may be lower, with less pressure on the demand for carbon credits. In addition, if 
CO2 emissions increase, there may be less efforts to reduce emissions and fewer resources to 
invest in research and development of mitigation technologies. Similarly, countries with more 
active agriculture tend to have lower estimates of carbon valuation, as indicated by the negative 
relationship (-6.184). This result is corroborated by Smith et al. (2008), who pointed out that 
in regions where agriculture is of significant economic importance, the estimates for carbon 
valuation may be low due to the lack of effective policies and incentives to reduce emissions 
in agriculture. In the absence of financial or regulatory incentives to adopt more sustainable 
practices, farmers may not have sufficient incentive to invest in technologies and techniques 
that reduce their carbon emissions. The other regression coefficients (lnfert, lnpest, emp, land) 
showed positive relationship with carbon price, and a 1% increase in the natural logarithm of 
fertilizer use per capita would increase the value of carbon by USD 0.199/tCO2e. The smallest 
effect could be attributed to the share of employment in agriculture: a 1% increase in this 
variable would increase the value of carbon by only USD 0.006/tCO2e.

Considering the coefficients of the quantile regression for the set of publications, the estimated 
carbon price for Brazilian agriculture in 2021 was USD 11.54 /tCO2e. There is a clear disparity 
between the carbon price in Brazilian agriculture and in some developed countries, as shown in 
Figure 5. However, Søndergaard et al. (2021) point out that prices above USD 10/tCO2e serve as 
an important benchmark to stimulate mitigation efforts. Thus, the estimate obtained highlights 
the potential for Brazilian agriculture. Very few studies have estimated the value of carbon in 
Brazilian agriculture, out of which three stand out (Gurgel & Laurenzana, 2016; Gouvello et al., 
2010; McKinsey & Company, 2009). These studies demonstrate carbon prices of USD 5.41/
tCO2e, USD 11.09/tCO2e, and USD 5.37/tCO2e, respectively, in terms of constant 2017 prices.

Carbon pricing initiatives serve to internalize environmental expenses and foster the uptake 
of cleaner technologies and sustainable production methods. This parameter for Brazilian 
agriculture is relevant to guide policies and strategies adapted to local specificities. However, it 
is important to highlight the limitations of this study, including the need to integrate additional 
variables that might influence carbon values. Specifically, institutional factors such as price 
barriers and incentives for agricultural and livestock producers to embrace low-carbon practices, 
alongside cultural elements affecting farmers’ willingness and capacity to adopt sustainable 



16/21Revista de Economia e Sociologia Rural  63: e288293, 2025 

Carbon pricing in agriculture: a systematic literature review

production systems, should be considered (Søndergaard  et  al., 2021). Other determinants 
could also be explored, such as total factor productivity for crops, use of energy and materials 
within a circular economy.

5. CONCLUSIONS

The global agricultural sector, which includes both crops and livestock, is a significant emitter 
of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4), gases with significant global 
warming potential. According to Food and Agriculture Organization of the United Nations 
(2023), more than one-third of global agricultural emissions come from the global food 
system. Carbon pricing has emerged as a tool to mitigate these emissions, and discussions 
mainly revolve around the implementation of a carbon tax or the adoption of a cap-and-trade 
system by economies. Academic and policy discourse has increasingly focused on whether the 
agricultural sector should be included in carbon pricing frameworks within emissions trading 
schemes (Stepanyan et al., 2023).

The objective of this article was to assess carbon pricing in agriculture by examining the 
methodologies used, the prices achieved, and the factors influencing these prices from 2004 
to 2024. This article fills this gap by systematically synthesizing the evidence on carbon pricing 
and applying the integrated results of the review to the Brazilian agricultural context. In practical 
terms, the establishment of a reference value for the price of carbon in Brazilian agriculture is 
another gap that the study fills, providing a solid basis for the development of specific policies 
and strategies. Using the Page  et  al. (2021) methodology, the set of publications included 
integrated valuation models, carbon abatement cost analysis, shadow pricing techniques, and 
models integrating programming and optimization. Taking into account countries at different 
levels of development, the carbon prices identified in this study range from USD 2.60/tCO2e 
to USD 157.50/tCO2e, with values deflated to the year 2021. Notably, China accounts for one-
third of the 32 publications analyzed. This research has identified several determinants that 
influence the price of carbon in agriculture, notably highlighting in particular the impact of GDP 
per capita, emissions per capita levels, and fertilizer use per capita on this valuation.

A review of existing methodologies provided a broad background for the study and clarified 
global practices for estimating carbon prices. Due to the variability among these methodologies, 
a quantile regression approach was then applied to the Brazilian context. It is important to 
clarify that methods such as marginal abatement cost and general equilibrium models are 
tools traditionally used for carbon pricing. On the other hand, quantile regression is not a 
carbon pricing method, but rather a statistical technique that allowed to extrapolate values 
for Brazil by avoiding the presence of heterogeneity. The estimated carbon price for Brazilian 
agriculture in 2021 was USD 11.54/tCO2e at constant 2017 prices. There is a gap between the 
cost of carbon in agriculture for some developed countries and the estimates calculated for 
Brazil. Nevertheless, carbon prices above USD 10/tCO2e are highlighted as a critical threshold 
to encourage mitigation efforts (Søndergaard et al., 2021). This estimate puts a cost on carbon 
emissions and encourages farmers to look for more efficient and less carbon-intensive ways of 
doing things. Comparison of carbon prices can help guide assessment strategies in agriculture. 
However, pricing alone may not be sufficient to promote a full transition to a low-carbon economy. 
Other measures, such as investment in research and development of clean technologies, may 
be needed to stimulate innovation and reduce the cost of climate solutions (Stern, 2007). In 
this sense, Brazil has made some progress in its national climate policy. In 2010, the country 
promoted the adoption of the Low Carbon Agriculture Plan (Plano ABC), which included several 
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measures to support mitigation efforts in Brazil’s agricultural sector. The updated version, Plano 
ABC+, was launched in 2021. In addition, the Brazilian Forest Code was revised in 2012 and Law 
No. 14.119/21, which regulates payments for environmental services, was launched in 2021.

Given the price variability observed within the same country, pilot projects analyzing carbon 
estimation methods across agricultural segments or regions could precede the establishment 
of regulations for the carbon market itself, with the aim of standardizing methodologies 
(Zhu et al., 2023). Selecting representative areas within a country to test and evaluate different 
carbon estimation methods under real-world conditions would facilitate direct comparisons 
and assess their effectiveness and feasibility in different agricultural and regional contexts. 
Such evaluations are imperative, especially considering that the agricultural sector remains 
excluded from price regulation schemes in many economies. For example, the European 
Union’s Emissions Trading Scheme has not included agricultural GHG emissions. This exclusion 
reflects the European Union’s recognition of agriculture as a distinct economic sector that 
both contributes to and is vulnerable to climate change through its GHG emissions. Similarly, 
countries such as China and New Zealand have not included the agricultural sector in their 
emissions trading schemes (Verschuuren et al., 2023). In Brazil, the agricultural sector was 
excluded from Bill No. 2.148/2015, which seeks to regulate the carbon market, due to the 
significant challenges posed by the specificities of the sector. These factors suggest that carbon 
pricing in agriculture is an important tool to support government decision-making, and requires 
appropriate measurement methodologies in different contexts. In the future, pilot projects and 
standardized methodologies can pave the way for the integration of agriculture into carbon 
pricing frameworks, providing a pathway towards sustainable and resilient agricultural practices.
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