ANIMAL RAISING AND THE MEAT INDUSTRY: IMPORTANCE FOR THE BRAZILIAN ECONOMY

Flávia Maria de Mello Bliska¹ Joaquim José Martins Guilhoto²

ABSTRACT

In this work we analyzed the importance of the meat sector - cattle, poultry and other animals raising, slaughter and processing - for the other Brazilian economic sectors. We used the input-output model, mainly the following analyzes Rasmussen-Hirschman multipliers and linkage indices, and pure inter-industrial linkage indices. And we used the Brazilian input-output matrix of 1995. The results indicate that: a) the cattle and poultry slaughter and process industries can be considered key-sectors for the Brazilian economy; b) changes in the final demand of the cattle and poultry slaughter and process industries, will result in a significant impacts on the total production, salary and imports of the Brazilian economy; and changes in the final demand of the animals raising sectors and animal slaughter and process industry, except beef and poultry, will not be significant; c) the beef and poultry industries are strongly dependent of the other economic sectors, and those sectors are more connected to final demand; d) changes in the production process of the animal-raising sectors and meat process industries do not affect its share in the Brazilian economy, and do not affect the share of other Brazilian economic sectors in the national economy.

Key words: Brazilian Economy, Animal-Raising, Meat Processing.

¹Agronomist, PhD in Applied Economics, Research Scientist of the Meat Technology Center, Food Technology Institute.
² Economist, Associate Professor of the Dep. of Economics, Administration and Sociology, ESALQ/USP, and Professor of Regional Economics Applications Laboratory(REAL), University of Illinois.

1 Introduction

The main productive chains of the Brazilian meat sector are the beef chain, the poultry chain, and the pork chain. The animal slaughter/ process industries are very important to the Brazilian economy because:

a) The cattle are raised in almost all the Brazilian municipality, and the Brazilian herd is distributed as following: 34.0% in the Middle West region, 23.0% Southeast, 16.5% South, 14.5% Northeast and 12.0% in the North region; cattle-raising's share in the Brazilian Gross Domestic Product (GDP) is above 3.0% (Números..., 1994); beef is sold in more than 1.8 million commercial establishments; and the beef chain employs around 8 million people (Dbo Rural, 1995);

b) The Brazilian poultry sector has a significant participation in the Brazilian meat production and consumption. The poultry production is concentrated in the South region, 45.0%, and 55.0% are distributed as following: 29.0% in the Southeast region, 15.0% in the Northeast, 6.0% in the Middle West and 5.0% in the North region. The poultry slaughter and processing industries are also concentrated in the South and Southeast. Through the poultry chain flow about US\$ 6 billion yearly (Coutinho & Ferraz, 1993; Martins, 1996);

c) The pork are raised on at least 2.7 million rural properties and through this chain flow about US\$ 920 million yearly in farm production alone; the pork chain employs about 2.5 million people in the South and South-East region of the country and consumes a significant part of Brazilian production of corn and soy oil byproducts (ANUALPEC, 1996 and 1997). Around 35.0% of the Brazilian pork are raised in the South region (close to the largest part of the slaughter and pork process industry), 17.0% are located in the Southeast, 10% in the Middle West (where there are good perspectives of expansion, following the increase of corn and soybean productions); 13.0% in the North and 25.0% in the Northeast regions, and are used for the subsistence.

In the economic literature there are some papers that analyze the

Brazilian productive structure. Nevertheless, usually the economic sectors are aggregated, with a view to possibility to compare each economic sector with the rest of the Brazilian economy. In general, the different segments of the meat sector (animal-raising sectors and animal slaughter sectors) are aggregated in the sectors "Cattle-raising" and "Animal slaughter" respectively. And sometimes those sectors are incorporated in the sectors "Agriculture" and "Food industry" respectively.

The Brazilian meat sector is very important to the Brazilian economy, especially to the Brazilian agriculture and food industry, therefore the main objective of this work is to consider those sectors separately, and to analyze the importance of each segment of the meat sector to the other sectors of the national economy. The specific objectives are: a) to analyze the importance of the cattle, poultry and other animalraising sectors and beef, poultry and other animal slaughter/process industries, mainly the impact of changes in their final demand on the rest of the economy, and the linkage power in the Brazilian economy; b) to analyze the effects of changes in the productive process in those sectors on their own share in the national economy, and on the share of the other economic sectors.

2 Methods

Inter-industries flows in a specific economy are determined by technological and economic factors, and these flows can be described by a system of simultaneous equations represented by:

$$X = A X + Y \tag{1}$$

where: X is a vector $(n \times 1)$ and it contains the value of total production by sector; Y is also a vector $(n \times 1)$ and it contains the final demand values; and A is a $(n \times n)$ matrix which contains the production technical coefficient (Leontief, 1951, in Guilhoto et al., 1994; Guilhoto, 1995; Guilhoto & Picerno, (1995); e Miller & Blair, 1985).

In the model above, the final demand vector is usually considered exogenous to the system; thus, the total production vector is determined only by the final demand vector, that is:

X = B Y (2) and $B = (I - A)^{-1}$ (3)

where B is a $(n \times n)$ matrix which contains the Leontief inverse matrix.

Starting from equation (1), we can evaluate the impact of different changes in the final demand on the total production, import volumes and total salaries. Thus,

$$\Delta X = B \Delta Y$$
, $\Delta M = m \Delta X$ and $\Delta S = s \Delta X$

where ΔY , ΔX , ΔM and ΔS are (n x 1) vectors which show respectively the final demand increase, and the impacts on the total production volume, on the import values and on the salary totals; *m* and *s* are diagonal (n x n) matrices in which the diagonal elements are the import and salary coefficients.

Starting from equation (3), and following Rasmussen (1956) and Hirschman (1958), we can determine which sectors present high linkage power in a specific economy. Those authors defined the backward and forward linkage indices as following: a) **backward linkage index:** this index indicate how much a specific sector demand inputs from the other sectors; values above 1 indicate a sector very dependent of the rest of the economy; b) **forward linkage index:** this index indicate how much the other economic sectors demand inputs from a specific sector; values above 1 indicate a sector which products are very demand by the rest of the economy.

The key-sectors for the growing of the national economy are those which show Rasmussen/Hirschman backward and forward linkage indices above 1. Values above 1 indicate sectors above the average (restrict concept). But we can consider a less restrict concept: the key-sector is that one that shows Rasmussen/Hirschman backward and/or forward linkage indices above 1.

Starting from equation (3), b_{ij} can be defined as an element of the inverse Leontief matrix *B*; *B*^{*} as the average of all elements of *B*; and B_{ij}^* and B_{ij}^* as the sum of a characteristic column and line of *B*, respectively. The indices will be¹:

Backward linkage index:	$U_{i} = [B_{*i}/n]/B^{*}$	(4)
Forward linkage index:	$U_{i} = [B_{i*}/n]/B^{*}$	(5)

The input-output model permit us to obtain the Rasmussen-Hirschaman multipliers, that can be used to determine the impact of changes in the final demand on the total production volume, on the import values and on the salary totals. The alteration in the final demand can be induced by the intervention of the public sector in the national economy. That is, the Rasmussen-Hirscman multipliers analyses permit us to determine the impact of different Government politics on the total production, imports, salaries and income distribution. The governmental interventions that affect sector that present high multipliers will result in significant impacts on the economy. This work uses the Leontief multipliers, or multipliers Type I. These multipliers do not consider the endogenous demand that is generated into productive process, after a determined impact on the exogenous demand. This situation, in general, results in Rasmussen-Hirschman multipliers sub-estimated.

To separate the impacts of a certain sector from the other economic sectors we can use the pure inter-industrial linkage index. This proceeding can also be used to separate the impacts of the certain region from the rest of the economy, or still to separate the impacts of certain country from

¹ Those indices were completed whit the dispersion indices (Bulmer-Thomas, 1982): the dispersion of the backward linkage indices indicate how much a sectorial impact is distributed to the other sectors, and the dispestion of the forward linkage indices indicate how much a determined sector is demanded by the other sectors.

the economic block in which it is inserted (Guilhoto, Sonis, Hewings, 1996; Guilhoto, Hewings, Sonis, 1997). This index is an improvement of the Cella-Clements approach.

The basic idea is to isolate certain sectors j from the rest of the economy and to define the effect of the total linkages of the sector j in the economy. That is, the difference between the total production of the economy and the production in the economy if the sector j does not buy inputs from the rest of the economy and it does not sell its production to the rest of the economy. This situation is equivalent to an elimination of a given industrial sector.

We can isolate determined sectors j from the rest of the economy considering an input-output system with two regions, which can be represented by the following direct Leontief coefficients (Guilhoto, Hewings, Sonis, 1997):

$$A = \begin{pmatrix} A_{jj} & A_{jr} \\ A_{rj} & A_{rr} \end{pmatrix}$$
(6)

where A_{jj} and A_{rr} are the quadrate matrices of direct inputs within the first and second regions and A_{jr} and A_{rj} are the rectangular matrices showing the direct inputs purchased by the second region and vice versa.

From (6), we can generate the following expression:

$$B = \left(I - A\right)^{-1} = \begin{pmatrix} B_{jj} & B_{jr} \\ B_{rj} & B_{rr} \end{pmatrix} = \begin{pmatrix} \Delta_{jj} & 0 \\ 0 & \Delta_{rr} \end{pmatrix} \begin{pmatrix} \Delta_{j} & 0 \\ 0 & \Delta_{r} \end{pmatrix} \begin{pmatrix} I & A_{jr} \Delta_{r} \\ A_{rj} \Delta_{j} & I \end{pmatrix}$$
(7)

Where:
$$\Delta_{j} = (I - A_{jj})^{-1}$$
 (8) $\Delta_{r} = (I - A_{rr})^{-1}$ (9)

Flávia Maria de Mello Bliska & Joaquim José Martins Guilhoto

$$\Delta_{jj} = \left(I - \Delta_j A_{jr} \Delta_r A_{rj} \right)^{-1}$$
(10)

$$\Delta_{rr} = \left(I - \Delta_r A_{rj} \Delta_j A_{jr} \right)^{-1}$$
(11)

Through the equation (7) we can reveal the process of production in an economy as well as derive a set of multipliers/linkages.

In the matrix
$$\begin{pmatrix} I & A_{jr}\Delta_r \\ A_{rj}\Delta_j & I \end{pmatrix}$$
 (12)

the first row separates the final demand by its origin; that is, it distinguishes between the final demand that comes from inside the region (I) from the one that comes from outside the region $(A_{ir}\Delta_{r})$. From the Leontief:

$$X = \left(I - A\right)^{-1} Y \tag{13}$$

And using the equation (7) to (12), we can derive a set of indices that can be used to rank the regions in terms of their importance in the economy and to see how the production process occurs in the economy, the pure inter-industrial indices:

$$PBL = \Delta_r A_{rj} \Delta_j Y_j$$
 and $PFL = \Delta_j A_{jr} \Delta_r Y_r$ (14)

The **PBL** will give us the pure impact on the rest of the economy of the value of the total production in region *j*, $(\Delta_{r} Y_{r})$. This impact is free from: a) the demand inputs that region *j* makes from region *j*, and b) the feedback from the rest of the economy to region *j* and vice-versa. The **PFL** will give us the pure impact on region *j* of the total production in the rest of the economy $(\Delta_r Y_r)$. Then, we can obtain the total pure interindustrial index, **PTL**, if we add PBL and PFL.

The structure of the Leontief model compel us to assume that: a) there is useless capacity in the economy, and an increase in the demand level result in an increase in the production level; b) the technical coefficients are fix (there are not technological changes during the period analyzed); c) the imports to be used in the productive process are not restrict.

This work uses the Brazilian input-output matrix of 1995 (MIP-IBGE, 1997). Some sectors of the production and input tables, "Agricultural" and "Animal slaughter", were desegregated into different segments to permit the study of the cattle, poultry and other animal-raising sectors and the beef, poultry and other animal process industries. Then we made a final balance to redistribute the internal values of these matrices into row and column totals, RAS Method (Bacharach, 1970). We considered the objectives of this work and the information available, and then we aggregated some other sectors of the economy. In the total we obtained 32 sectors.

The effects of changes in the productive process of the animalraising sectors and meat process industries on the Brazilian economy are also analyzed using the input-output model. In this work we simulated changes in the technical production coefficient of the Brazilian animalraising and animal slaughter/meat industry sector. We considerate that the meat sectors can improve its production process in the next 5 years, and that the other productive sectors would not have changes in their respective technical production coefficients. We changed the production coefficient of the sectors 2-Cattle-raising (a_{22}) , 3-Poultry-raising (a_{33}) , 4-Other animal-raising (a_{44}) , 20-Beef slaughter/processes industry (a_{2020}) , 21-Poultry slaughter/process industry (a_{2121}) and 22-Other animal slaughter/process industry (a_{2222}) . The coefficient was reduced in the same proportion in which the increases in the production efficiency of the 16-Meat industry are expected. The simulations realized are represented in the Table 1. To estimate changes in the production technical coefficient we considered preliminary studies, just as Bliska *et al.* (1998) and Coutinho & Ferraz (1993), statistics on the meat sectors (ANUALPEC 1996/1998), and results of studies on the technological demand, that are still not published, and that are being conducted in the Agricultural Secretary of the São Paulo State.

Table 1. Changes in the production process in the cattle, poultry and other Brazilian animal-raising sectors, and beef, poultry and other Brazilian meat process industries.

Sector	Coefficient changed in the	% of changes in the coefficients of Matrix A						
	Matrix A		Simulations					
		1 st -	2 nd -	3 rd -	4 th -			
2-Cattle-raising	a ₂₂	5	5	10	20			
3-Poultry-raising	a33	2	2	5	20			
4-Other animals-raising	a ₄₄	2	11	11	20			
20-Cattle slaughter / industry	a ₂₀₂₀	5	10	10	20			
21-Poultry slaughter / industry	a ₂₁₂₁	5	5	10	20			
22-Other animals slaughter	a ₂₂₂₂	5	10	15	20			

3 Results

The type I multipliers and the Rasmussen-Hirschman backward and forward linkage indices are represented in the Table 2. The Type 1 multipliers indicate that changes in the final demands of the cattle slaughter industry and poultry slaughter industry (respectively sectors 20 and 21) can result in significant impacts on the Brazilian economic production. Those sectors present, respectively, the highest multiplier and the third highest multiplier. The multipliers of the animal production sectors indicate that changes in their final demands probably do not generate significant impacts on the Brazilian economy.

The sector 22-Other animals slaughter presents the second smallest multiplier. Then the effect of changes in the final demand of this sector on the Brazilian economy will be smaller than the effect of changes in the final demand of the beef and poultry slaughter/process industry. But the sector 4-Other animals-raising presents multiplier bigger than the cattle and poultry-raising multipliers.

Sectors 2-Cattle-raising, 3-Poultry-raising and 4-Other animalsraising presents the 13th-, 14th- and 25th- forward linkage indices, respectively. And sectors 20-Beef slaughter/process industry, 21-Poultry slaughter/process industry and 22-Other animals slaughter/process industry presents the 18th-, 32nd- and 30th- forward linkage indices.

These results confirm that sectors 2-Cattle-raising and 3-poultryraising are demanded by the other economic sectors, and that the poultry slaughter and industrial sector presents the smallest forward linkages index into Brazilian economy, therefore this is sector more connected with the final demand.

			Rasmussen/Hirschman linkage indices				
			Back	ward	Forward		
Sectors	M ultipliers	Order	Index	Order	Index	Order	
1-Corn	1,6238	25	1,0060	11	0,8109	25	
2-Cattle-raising	1,5625	29	0,9009	13	0,7803	30	
3-Poultry-raising	2,0746	15	0,8188	14	1,0360	15	
4-Other animals-raising	2,1585	12	0,6333	25	1,0779	12	
5-Other farm products	1,5695	28	2,7366	2	0,7837	29	
6-Mining	1,9552	19	1,1166	7	0,9764	19	
7-Steel industry	2,3387	7	1,6713	5	1,1679	7	
8-Machinery/vehicles	2,0361	16	1,0927	8	1,0167	16	
9-Electric / electronic	1,9342	21	0,6608	22	0,9659	21	
10-W ood / furnishings	2,0022	17	0,6536	. 23	0,9998	17	
11-Paper / graphics	2,1552	13	0,9779	12	1,0763	13	
12-Rubber industry	2,1526	14	0,8022	15	1,0749	14	
13-Chemistry	1,9209	22	2,7639	1	0,9592	22	
14-Pharmacy / veterinary	1,8384	23	0,5429	31	0,9181	23	
15-Plastic goods	1,9584	18	0,7502	17	0,9780	18	
16-Textile industry / clothing	2,2227	9	1,0318	10	1,1099	9	

Table 2. Type 1 (Leontief) Multipliers and Rasmussen/Hirschman backward and forward linkage indices.

Table 2. Type 1 (Leontief) Multipliers and Rasmussen/Hirschman backward and forward linkage indices.(continuation)

			Rasmuss	en/Hirsch	m an linkage indices		
			Back	ward	Forward		
Sectors	M ultipliers	Order	Index	Order	Index	Order	
17-Shoes industry	2,2038	10	0,6123	27	1,1005	10	
18-Coffee industry	2,3726	6	0,6762	20	1,1848	6	
19-Vegetable products	2,1967	11	0,6906	19	1,0970	11	
processing							
20-Cattle slaughter / industry	2,5524	1	0,6920	18	1,2746	1	
21-Poultry slaughter /	2,4566	3	0,5045	32	1,2268	3	
industry							
22-Other anim als slaughter	1,5165	31	0,5474	30	0,7573	31	
23-Milk industry	2,4154	5	0,6372	24	1,2062	5	
24-Sugar industry	2,4421	4	0,6731	21	1,2195	4	
25-Vegetable oils industry	2,5043	2	0,7758	16	1,2505	2	
26-Other food products	2,3070	8	1,0375	9	1,1520	8	
27-Other industries	1,9432	20	0,6016	28	0,9704	20	
28-Public usefulness	1,5990	27	1,1328	6	0,7985	27	
29-Building	1,6257	24	0,5939	29	0,8118	24	
30-Commerce / transport	1,6171	26	2,0746	3	0,8076	26	
31-Communication	1,2533	32	0,6230	26	0,6258	32	
32-Services	1,5718	30	1,9680	4	0,7849	28	

Flávia Maria de Mello Bliska & Joaquim José Martins Guilhoto

Since 80 years, the poultry slaughters house are increasing the production of products with high added value, to supply the retail market, mainly poultry parts, boned or not, marinated, batter and breaded products, hamburger and meat balls. And the major part of cattle slaughter houses have as final product the half carcass, that are divided in the supermarkets and butchers (the boned are been implanted in the slaughters house and processing industries, but it is not significant when we consider the total volume of cattle hearted in the country). Over that, just 15.0% of the Brazilian beef are destined to the processing industries, while 85.0% are consumed *in nature*. The Federal Edict that regulates the Brazilian meat market, restricting the half-carcass commerce, is not totally implanted (Bliska, 1997a; Bliska, 1997b; Bliska, 1998; Bliska *et al*, 1998). The sector 4-Other animals-raising and the sector 22-Other animals slaughter/ processing industries present forward linkage indices very small, that is, these sectors are not strongly demanded by the other economic sectors.

At least, the animal raising sectors and animals slaughter/process industries do not present forward linkage indices above 1. That is, these sectors are not strongly demanded by the other economic sectors. The forward dispersion indices of sectors 21-Poultry slaughter/process industries and 22-Other animals slaughter/process industries indicate that these sectors are demanded by a few economic sectors. The forward dispersion indices of sectors 2-Cattle-raising and 3-Poultry-raising indicate that these sectors are homogeneously demanded by the other sectors. These results are similar to those obtained by Guilhoto & Picerno (1996): sectors with the highest forward linkage indices present the smallest dispersion indices and vice-versa; that is, important sectors as input suppliers have impacts better distributed into other economic sectors.

The cattle and poultry slaughter and industrial sectors also present the highest and the third highest backward linkages and the small forward linkages index, indicating that those sectors demand products from the other several sectors, but they are not demanded by other sectors since most of their sales are to final demand. Both present backward linkage indices above 1, that is, these sectors are strongly dependents of the rest of the economy. The value of the backward linkage indices of the food industry are among the highest indices into Brazilian economy, and the backward linkage indices of the animals raising sectors show small values. The animals slaughter/process industries present small values of backward dispersion indices, that is, the impact of changes in the production level of these sectors will stimulate the other economic sectors uniformly. The dispersion indices of the animals raising sectors indicate that the effects resulted from changes on the cattle production, sector 2-Cattle-raising, will be concentrated in a small number of sectors, in relation to poultry and other animals raising. These last sectors will stimulate the other economic sectors uniformly. The sector that presents high backward linkage indices, also presents small dispersion indices and vice-versa.

The analyzes show us that sectors 4-Other animal-raising and 22-Other animals slaughter/process industries are not strongly demanded by the other economic sectors. Above that, the sector 4-Other animals-raising presents the highest backward linkage index among the animals raising sectors (this is the animal raising sector that demand more inputs from the rest of the economy). And the sector 22-Other animal slaughter/process industries presents the smallest backward linkage index among the animals slaughter/process industries (the animal process sector that presents smaller dependence from the other economic sectors). The other animals raising sector also presents the highest type I multiplier, among the animals raising sectors; and the smallest type I multiplier, among the animals slaughter/ process industries. If we consider that around 85.0% of the pig are used in the industrial processing, and 15.0% are consumed in nature (Bliska, 1997b), and considering that around 28.0% of the pork raising are used to subsistence, those results can show a strong informal slaughter, to subsistence, or at least an informal market bigger than in the beef and poultry markets.

With relation to the sectors with the highest linkage indices in the Brazilian economy, this work obtained results similar to those one obtained by other authors, such as Bliska & Guilhoto (1996), Guilhoto (1992), Guilhoto, Conceição & Crocomo (1996) e Guilhoto & Picerno (1995). But these other studies analyzed other periods of time and an aggregated meat sector.

Finally, if we consider that key-sectors are those which display Rasmussen/Hirschman backward and forward linkage indices above 1 (restrict concept), animal-raising sectors and animal slaughter/process industries can not be considered key-sectors to the Brazilian economy. But if we consider that key-sectors are those that display Rasmussen/Hirschman backward and/or forward linkage indices above 1, a less restrictive concept, sectors 20-Beef slaughter/process industries and 21-Poultry slaughter/process industries can be considered key-sectors. These sectors present backward linkage indices above 1, and present respectively the highest and the 3rd- highest backward linkage indices. This result is similar to the multipliers analyzes (beef and poultry slaughter/process industries present the highest and the 3rd- highest type I multiplier).

The pure forward, backward and total inter-industrial indices are represented in the Table 3, and measure monetary impacts (R\$) of each sector on the other economic sectors. The results indicate that the disappearance of the animal raising sectors – 2-Cattle-raisin, 3-Poultryraising and 4-Other animals-raising – and 22-Other animals slaughter/ process industry should not cause significant impacts on the Brazilian economy. And the disappearance of sectors 20-Cattle and 21-Poultry slaughter and industrial sectors should result in significant impacts on the economy. The pure indices confirm the results obtained in the Rasmussen/Hirschman on the importance of the cattle and poultry slaughter and industrial sectors for the economy.

We analyzed the changes in the production processes of the meat industry, and we verified that those changes do not affect their share in the Brazilian economy. First, we analyzed Rasmussen/Hirschman backward and forward linkage indices and pure backward, forward and total linkage indices. Second, we simulated changes in the technical coefficients and calculate those indices again. Then, we compare the order of those indices before and after the changes in the production process. We can see, in Tables 4 and 5 (results of the 4th- simulation), that there are small changes in the indices analyzed, but there are not significant changes in the hierarchy of those indices, although we had considered changes of 20.0% in the animal raising sectors and animal slaughter and process industries. The significant changes occurred in the hierarchy of the first four sectors with highest type I multipliers, and the first four sectors with highest Rasmussen/Hirschman backward linkage indices.

Moreover, although all the Brazilian meat sectors can still increase its production and improve its technological process, changes in the production processes of the meat sector do not affect its share in the regional and national economies, and will not affect the share of the other economic sectors.

Changes in the production processes of the animal raising sectors and animal slaughter /process industries do not affect the Brazilian economy directly, but we have to consider the impacts on the economy when certain economic sector uses old technologies, and the economic damage that can not be detected by the input-output model. The absence of technological changes can increase the external competition. Table 3. Pure inter-industrial linkage indices (R\$-billions): Pure Forward Linkage - (PFL), Pure Backward Linkage (PBL) and Pure Total Linkage (PTL).

	Pure Indices						
Sectors	PF	PFL		L	PTL		
	Index	Order	Index	Order	Index	Order	
1-Corn	3,564	22	0,058	32	3,620	30	
2-Cattle-raising	5,173	16	1,720	25	6,890	22	
3-Poultry-raising	2,633	23	1,474	27	4,110	29	
4-Other animals-raising	1,976	25	1,646	26	3,620	31	
5-Other farm products	34,655	4	9,846	9	44,500	5	
6-Mining	19,730	6	2,882	22	22,610	9	
7-Steel industry	34,785	3	6,128	13	40,910	7	
8-M achinery / vehicles	15,752	8	27,376	4	43,130	6	
9-Electric / electronic	5,317	15	15,462	6	20,780	10	
10-W ood / furnishings	4,023	19	5,700	15	9,720	17	
11-Paper / graphics	13,231	9	3,635	20	16,870	13	
12-Rubber industry	5,463	14	0,589	31	6,050	24	
13-Chemistry	49,544	2	5,595	16	55,140	3	
14-Pharmacy / veterinary	0,980	28	7,337	11	8,320	18	
15-Plastic goods	6,482	11	1,094	29	7,580	19	
16-Textile industry / clothing	4,968	17	8,154	10	13,120	14	

	Pure Indices							
Sectors	PF	PFL			PTL			
	Index	Order	Index	Order	Index	Order		
17-Shoes industry	0,383	31	4,230	18	4,610	27		
18-Coffee industry	0,603	30	3,651	19	4,250	28		
19-Vegetable products processing	4,245	18	14,702	7	18,950	11		
20-Cattle slaughter / industry	1,947	26	9,984	8	11,930	15		
21-Poultry slaughter / industry	0,296	32	5,522	17	5,820	25		
22-O ther an im als slaugh ter	0,657	29	0,852	30	1,510	32		
23-M ilk industry	1,082	27	6,056	14	7,140	20		
24-Sugar industry	1,985	24	3,156	21	5,140	26		
25-Vegetable oils industry	3,764	20	7,232	12	11,000	16		
26-Other food products	7,058	10	19,564	5	26,620	8		
27-Other industries	3,586	21	2,526	23	6,110	23		
28-Public usefulness	15,856	7	2,322	24	18,180	12		
29-Building	5,521	13	48,012	2	53,530	4		
30-Commerce / transport	44,232	1	35,540	3	79,770	2		
31-Communication	5,832	12	1,195	28	7,030	21		
32-Services	34,082	5	78,002	1	112,080	1		

Table 3. Pure inter-industrial linkage indices (R\$-billions): Pure Forward Linkage - (PFL), Pure Backward Linkage (PBL) and Pure Total Linkage (PTL).(continuation)

Table 4. Type 1 (Leontief) Multipliers and Rasmussen/Hirschman backward and forward linkage indices after the 4th- simulation of change in the production process of the cattle, poultry and other animal-raising sectors, and beef, poultry and other meat process industries.

			Rasmussen/Hirschman linkage indices				
Sectors			Back	ward	Forward		
	Multipliers	Order	Index	Order	Index	Order	
1-Corn	1,6238	25	0,8130	25	1,0052	11	
2-Cattle-raising	1,5469	30	0,7745	30	0,8859	13	
3-Poultry-raising	2,0406	15	1,0218	15	0,8076	14	
4-Other animals-raising	2,1539	14	1,0785	13	0,6314	25	
5-Other farm products	1,5691	29	0,7857	28	2,7403	2	
6-Mining	1,9550	19	0,9789	19	1,1189	7	
7-Steel industry	2,3385	7	1,1709	7	1,6749	5	
8-Machinery / vehicles	2,0359	16	1,0194	16	1,0950	8	
9-Electric / electronic	1,9340	21	0,9684	21	0,6625	22	
10-Wood / furnishings	2,0020	17	1,0024	17	0,6553	23	
11-Paper / graphics	2,1550	12	1,0790	12	0,9801	12	
12-Rubber industry	2,1524	13	1,0777	14	0,8042	15	
13-Chemistry	1,9207	22	0,9617	22	2,7672	1	
14-Pharmacy / veterinary	1,8380	23	0,9203	23	0,5439	31	
15-Plastic goods	1,9583	18	0,9805	18	0,7519	17	
16-Textile industry/clothing	2,2225	9	1,1128	9	1,0343	10	

Table 4. Type 1 (Leontief) Multipliers and Rasmussen/Hirschman backward and forward linkage indices after the 4th- simulation of change in the production process of the cattle, poultry and other animal-raising sectors, and beef, poultry and other meat process industries.(continuation)

			Rasmussen/Hirschman linkage indice				
Sectors			Back	ward	Forward		
	M ultipliers	Order	Index	Order	Index	Orde	
17-Shoes industry	2,1979	10	1,1005	10	0,6138	27	
18-Coffee industry	2,3725	6	1,1879	6	0,6780	19	
19-Vegetable products processing	2,1963	11	1,0997	11	0,6917	18	
20-Cattle slaughter / industry	2,4823	2	1,2429	2	0,6769	20	
21-Poultry slaughter /	2,4390	4	1,2212	4	0,5056	32	
22-Other animals slaughter	1,5010	31	0,7515	31	0,5455	30	
23-Milk industry	2,4151	5	1,2093	5	0,6389	24	
24-Sugar industry	2,4418	3	1,2226	3	0,6747	21	
25-Vegetable oils industry	2,5033	1	1,2534	1	0,7774	16	
26-Other food products	2,3061	8	1,1547	8	1,0349	9	
27-Other industries	1,9429	20	0,9728	20	0,6031	28	
28-Public usefulness	1,5989	27	0,8006	27	1,1350	6	
29-Building	1,6256	24	0,8140	24	0,5954	29	
30-Commerce / transport	1,6160	26	0,8091	26	2,0759	3	
31-Communication	1,2532	32	0,6275	32	0,6244	26	
32-Services	1,5710	28	0,7866	29	1,9703	4	

Table 5. Pure inter-industrial linkage indices (R\$-billions): Pure Forward Linkage - (PFL), Pure Backward Linkage (PBL) and Pure Total Linkage (PTL) after the 4th- simulation of change in the production process of the cattle, poultry and other animal-raising sectors, and beef, poultry and other meat process industries.

	Pure Indices						
Sectors	PFL		PE	PBL		Ĺ	
	Index	Order	Index	Order	Index	Order	
1-Corn	3,564	22	0,058	32	3,620	30	
2-Cattle-raising	5,122	16	1,744	25	6,870	22	
3-Poultry-raising	2,590	23	1,513	27	4,100	29	
4-Other animals-raising	1,973	25	1,648	26	3,620	31	
5-Other farm products	34,655	5	9,841	9	44,50	5	
6-Mining	19,73	6	2,882	22	22,610	9	
7-Steel industry	34,785	4	6,127	13	40,910	7	
8-Machinery / vehicles	15,752	8	27,375	4	43,130	6	
9-Electric / electronic	5,317	15	15,461	6	20,780	10	
10-Wood / furnishings	4,023	19	5,699	15	9,720	17	
11-Paper / graphics	13,231	9	3,635	20	16,870	13	
12-Rubber industry	5,463	14	0,589	31	6,050	24	
13-Chemistry	49,544	1	5,595	16	55,140	3	
14-Pharmacy / veterinary	0,980	28	7,334	11	8,310	18	
15-Plastic goods	6,482	11	1,094	29	7,580	19	
16-Textile industry / clothing	4,968	17	8,153	10	13,120	14	

Table 5. Pure inter-industrial linkage indices (R\$-billions): Pure Forward Linkage - (PFL), Pure Backward Linkage (PBL) and Pure Total Linkage (PTL) after the 4th- simulation of change in the production process of the cattle, poultry and other animal-raising sectors, and beef, poultry and other meat process industries.(continuation)

		Pure Indices						
Sectors	PFL	PFL		PBL		L		
	Index	Order	Index	Order	Index	Order		
17-Shoes industry	0,383	31	4,206	18	4,590	27		
18-Coffee industry	0,603	30	3,650	19	4,250	28		
19-Vegetable products	4,245	18	14,699	7	18,940	11		
processing								
20-Cattle slaughter / industry	1,901	26	9,980	8	11,880	15		
21-Poultry slaughter /	0,296	32	5,460	17	5,760	25		
industry								
22-Other animals slaughter	0,653	29	0,840	30	1,490	32		
23-Milk industry	1,082	27	6,055	14	7,140	20		
24-Sugar industry	1,985	24	3,156	21	5,140	26		
25-Vegetable oils industry	3,764	20	7,228	12	10,990	16		
26-Other food products	7,059	10	19,540	5	26,610	8		
27-Other industries	3,586	21	2,526	23	6,110	23		
28-Public usefulness	15,856	7	2,322	24	18,180	12		
29-Building	5,521	13	48,010	2	53,530	4		
30-Commerce / transport	44,233	2	35,537	3	79,770	2		
31-Communication	5,832	12	1,195	28	7,030	21		
32-Services	34,084	3	77,934	1	112,020	1		

Flávia Maria de Mello Bliska & Joaquim José Martins Guilhoto

4 Conclusions

The main conclusions are: a) changes in the final demand of the beef and poultry process industries will result in a significant impact on the Brazilian economy, while changes in the final demands of the other Brazilian economic sectors will not affect the national economy significantly; b) the beef and poultry process industries can be considered key-sectors to the Brazilian economy - we are considering that key-sectors are those which display Rasmussen/Hirschman backward or forward linkage indices above 1 - but the animal-raising sectors can not be considered key-sectors; c) the pure inter-industrial linkage indices show that the disappearance of the meat industry sector will result in a significant impact on the Brazilian economy, but the effects of the disappearance of the animal-raising sectors will not be significant; d) the animal-raising sectors and the meat industry are very demanded by the other Brazilian economic sectors; e) the beef and poultry industries are strongly dependent of the other economic sectors, and those sectors are more connected to final demand; f) changes in the production process of the animal-raising sectors and meat process industries do not affect its share in the Brazilian economy, and do not affect the share of other Brazilian economic sectors in the national economy.

5 References

- ANUALPEC 96/98. Anuário da Pecuária Paulista. São Paulo: FNP Consultoria & Comércio, 1996/98.
- BACHARACH, M. **Biproportional matrices & input-output change**. Cambridge: University Press, 1970. 170p.
- BLISKA, F. M. M. Tendências no mercado da carne de aves. Coletânea ITAL, v.27, n.1/2, p.119-128, jan./dez. 1997a.

BRAZILIAN REVIEW OF AGRICULTURAL ECONOMICS AND RURAL SOCIOLOGY. VOL.-39 Nº 1

- BLISKA, F. M. M. Industrialização da carne suína e bovina: análise e perspectiva. Revista Nacional da Carne, v.21, n.248, p.97-112, out.1997b.
- BLISKA, F. M. M. Perspectivas de demanda para o mercado de carnes embaladas. In: GONÇALVES,J. R. (Ed.) Preservação e acondicionamento de carne bovina in nature, Campinas: CTC/ITAL, 1998. p.1-8.
- BLISKA, F. M. M. (Coord.) Prospecção de demandas tecnológicas na cadeia produtiva de carne bovina em São Paulo. Boletim Técnico do Instituto de Zootecnia, n.42, 1998. 73p.
- BLISKA, F. M. M.; GUILHOTO, J. J. M. Abate de animais e preparação de carnes no Brasil: importância e comportamento do setor - 1970/75/ 80. Coletânea ITAL, v.26, n.1, p. 55-70, jan./jun. 1996.
- BULMER-THOMAS, V. Input-output analysis in developing countries: source, methods and applications. New York: Wiley, 1982. 197p.
- COUTINHO, L. G.; FERRAZ, J. C. Competitividade na indústria de abate e preparação de carnes: estudo da competitividade da indústria brasileira. Nota Técnica Setorial do Complexo Agroindustrial, Campinas, IE/ UNICAMP - IE/UFRJ, 1993, 63p.
- **DBO Rural**. Sistema bovino lidera faturamento na economia rural, v.13, n.174-A, p.22, fev.1995.
- GUILHOTO, J. J. M. Um modelo computável de equilíbrio geral para planejamento e análise de políticos agrícolas (PAPA) na economia brasileira. Piracicaba: 1995. 258p. Tese (Livre Docência) - Escola

Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo.

- GUILHOTO, J.J.M. Mudanças estruturais e setores chaves na economia brasileira, 1960-1990. *In*: ENCONTRO Brasileiro de Econometria, 14. Campos do Jordão. **Anais...**, v.1, p.293-310, 1992.
- GUILHOTO, J. J. M.; CONCEIÇÃO, P. H. Z.; CROCOMO, F. C. Estruturas de produção, consumo e distribuição de renda na economia brasileira: 1975 e 1980 comparados. Economia & Empresa. v.3, n.3, p.33-64, jul./set.1996.
- GUILHOTO, J. J. M.; SONIS, M.; HEWINGS, G. J. D. Linkages and multipliers in a multiregional framework: integration of alternative approaches. **Discussion Paper**. Urbana-Champaign: Regional Economics Applications Laboratory. 1996. 20p.
- GUILHOTO, J. J. M.; HEWINGS, G. J. D.; SONIS, M. Interdependence, linkages and multipliers in Asia: an international input-output analysis.
 Discussion Paper. Urbana-Champaign: Regional Economics Applications Laboratory. 1997. 33p.
- GUILHOTO, J.J.M.; PICERNO, A. E. Estrutura produtiva, setores-chave e multilplicadores setoriais: Brasil e Uruguai comparados. **Revista Brasileira de Economia**, v.49, n.1, p.35-61, jan./mar.1995.
- HIRSCHMAN, A.O. **The strategy of economic development**. New Haven: Yale University Press, 1958.
- IBGE. Matriz de insumo produto Brasil 1995. Rio de Janeiro: IBGE, 1997, 217p.

BRAZILIAN REVIEW OF AGRICULTURAL ECONOMICS AND RURAL SOCIOLOGY. VOL.-39 Nº 1

- IBGE. Produção da Pecuária Municipal-Brasil; Rio de Janeiro: IBGE, v.23, n.1, 1995, 10p.
- MARTINS, S. S. Cadeias produtivas do frango e do ovo: avanços tecnológicos e sua apropriação. São Paulo: 1996. 113p. Tese (Doutorado) - Escola de Administração de Empresas de São Paulo da Fundação Getúlio Vargas.
- MILLER, R. E.; BLAIR, P. D. Input-output analysis: foundations and extensions. Englewood Cliffs: Prentice-Hall, 1985. 464p.
- NÚMEROS e metas para a pecuária bovina de corte. **Revista Nacional** da Carne, v.19, n.213, p.113, nov. 1994.
- RASMUSSEN, P. Studies in inter-sectoral relations. Amsterdam: North Holland, 1956.
- RODRIGUES, M. T. Eficiência alocativa do fundo constitucional de financiamento do Nordeste (FNE) - uma visão de insumo-produto. Piracicaba: 1997. 217p. Dissertação (MS) Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo.