A STUDY ON THE SELECTION OF AGRICULTURAL ADAPTIVE DEVELOPMENT AREAS USING GENETIC ALGORITHMS APPLIED TO MORE THAN ONE CROP
Jaime Hidehiko Tsuruta, Takashi Hoshi
Abstract
Geographical information on large areas can be obtained in a macroscopic way based on image data of natural resource satellites. Application examples in agriculture, with experiments for selection of areas for agricultural development have been based on geographical information, and others related with soils and existing research on climate. However, the existent methods were efficient for a small number of areas, and for one crop only. This work selected areas for agricultural development for more than one crop using a genetic algorithms approach. With these algorithms, that are part of computational models inspired by nature, and used to solve search and optimization problems, maximization of the total net income of the planted crops was sought. The study area is located in the district of Ira{ de Minas, and the production of two crops: soybean and corn was studied. In this model, the production of crops is a function of the application of basic inputs: lime and the fertilizer, as well as production costs. The quantities of these inputs were adjusted to the cost of the production systems of that region. The introduction of irrigation systems to avoid loss of production by drought was considered. With the evolution of genetic research, productivity of new varieties was also considered. The results show that the selection of agricultural adaptive development areas using genetic algorithms for more than one crop was made operational.
Keywords
Referências
BACK, T. Evolutionary Algorithms in Theory and Practice. New York: Oxford University Press, 1996.
BEASLEY, D.; BULL, D.R.; MARTIN, R.R. An overview of genetic algorithms: Part 1, Fundamentais. Computing, v. 15, n. 2, 1993, p. 58-69.
CAMPO, Companhia de Promoção Agrícola. Mapa de Monitoramento das Áreas do Prodecer Piloto I e II, Município de Iraí de Minas. Japan International Cooperation Agency-JICA. Escala 1:20,000, 1992/93.
DARWIN, Charles. On The Origin of Species. New York: A Mentor Book, 1958, 496p.
DARWIN, Charles. Origem das Espécies. Belo Horizonte: Villa Rica, 1994, 354p.
DE JONG K. The analysis and behaviour of a class of genetic adaptive systems. PhD thesis, University of Michigan, 1975.
EMBRAP A-Centro de Pesquisa Agropecuária dos Cerrados (Planaltina, DF). Pesquisa aponta estratégias contra veranico. Brasilia: EMBRAPA-CPAC. 1984, 2p. (EMBRAPA-CPAC. Noticiário, 70).
EMBRAPA-a. Relatório do Sistema de Produção, do Sistema Gerenciador de Padrão Tecnológico, produto Soja, ano agrícola de 1998. Brasília: Embrapa/SEA/CEE, 1998.
EMBRAPA-b. Relatório do Sistema de Produção, do Sistema Gerenciador de Padrão Tecnológico, produto Milho, ano agrícola de 1992. Brasília: Embrapa/SEA/CEE, 1998.
FNP Consultoria e Comércio. Informações Agrícolas. URL: http:// www.fnp.com.br/. Consultado em 6 jul. 2000.
GOLDBERG, D.E. Genetic algorithms in search, optimization and machine learning., Reading: Addison-Wesley, 1989. p. 11-172.
HOLLAND, J.H. Adaptation in natural and artificial systems. MIT Press, 1975.
IBGE. Área e população estimada de Iraí de Minas, em 1996. URL: http://www.ibge.gov.br/ Consultado em 7 ago. 2000.
INAGAKI T.; HOSHI T.; AKIYAMA T. Selection of large adaptive area for agricultura! development based on satellite image data. Japan Society of Operations Research, ago. 1986. p. 512-518 (em japonês).
INAGAKI, T.; HOSHI, T. et alli. Optimization of agricultura! development for large areas including construction of irrigation canals. Japan Society of System and Control, v. 31, n.6, 1987. p. 457-464 (em japonês).
MIRANDA, L.N.; MIELNICZUK, J.; LOBATO E. Calagem e adubação corretiva. ln: V Simpósio sobre o Cerrado. Cerrado: Uso e Manejo, Brasília, 1979. Editerra, 1980.
MITCHELL, M. An introduction to genetic algorithms. Cambridge: MIT Press, 1977. 209p.
SCHAFFER, J.D. A practical guide to genetic algorithms. Naval Research Laboratory. URL: http://cheml.nrl.navy.mil/~shaffer/ practga.html/. Consultado em 4 jul. 1999.
SILVA, C.M. da. População de plantas de soja no sistema plantio direto, na região de Dourados-MS. Dourados: Embrapa Agropecuária Oeste. Comunicado Técnico, 39).
SOUSA, D.M.G. Calagem e adubação para culturas da soja no Cerrado. Brasília: EMBRAP A-CP AC, 1984. 9p. (EMBRAP A-CP AC. Comunicado Técnico, 38).
VILELA, L.; MIRANDA, L.N. de; PERES, J.R.R.; SOUZA, P.I. de M. de.; SUHET, A.R.; SPEHAR, C.R.; VARGAS, M.A.T.; VIEIRA, R.S. A Cultura da soja em solos de Cerrados do Distrito Federal. 2.ed. Brasília: EMBRAPA-CPAC, 1978. 16p. (EMBRAPA-CPAC. Comunicado Técnico, 2).
WELSTEAD, S.T. Neural network and fuzzy logic applications in C/ C++. New York: John Wiley & Sons. 1994. 494p.
WHITLEY, D.: A genetic algorithm tutorial. Technical Report CS-93- 103, Department of Computer Science, Colorado University, March 1993.
WOLF, J.M.: Probabilidade de ocorrência de períodos secos na estação chuvosa para Brasilia. Pesquisa Agropecuária Brasileira, Brasília, n. 12, 1977. p. 141-150.
YAMAMOTO, N.; HOSHI, T. Study on extracting the adaptive agricultura! development area using genetic algorithm with complex PTYPE. Japan Society of Electronic, Information and Communication, v.J79-A, n.3, March 1996, p. 650-657 (em japonês).