Revista de Economia e Sociologia Rural
https://revistasober.org/article/doi/10.1590/1806-9479.2020.167573
Revista de Economia e Sociologia Rural
Original article

International trade in GMOs: have markets paid premiums on Brazilian soybeans?

Comércio Internacional de OGMs: Os importadores pagaram prêmios pela soja brasileira?

Paulo Ricardo Silva Oliveira; José Maria Ferreira Jardim da Silveira; Marcelo Marques de Magalhães; Roney Fraga Souza

Downloads: 1
Views: 90

Abstract

Abstract:: The introduction of GMO technology into global market chains and the rejection by consumers in some markets have led to the reorganization of soybean trades. Brazil has adopted the technology later than other countries and specialized in supplying non-GMO soybean between 1996 and 2005. On the other hand, the United States and Argentina, which adopted the technology in 1996, exported to countries with less social aversion to the GM-technology. The aim of this paper is to investigate the relation between changes in global market chains (price, source and destination and market shares) and GMO technology adoption, focusing on evidences for price premiums for non-GM soybeans produced in Brazil, by the analysis of the trade unit values (TUV). In order to do so, we employ multivariate methods (Principal Components and Hierarchical Cluster analyses) and estimate a Random Effect model based on a bilateral trade dataset covering the years from 1986 to 2010. Results show that GM-technology adoption significantly changed trade patterns. However, premiums were paid for Brazilian soybean only in niche markets, where the market share is lower.

Keywords

GM-food trade, market rejection, premium pricing, technology innovation and trade

Resumo

Resumo:: A inserção dos Organismos Geneticamente Modificados (OGM) nas redes globais de comércio, em 1996, e a rejeição de demanda em alguns mercados importantes levaram à significativa reorganização do comércio mundial de soja. O Brasil adotou a tecnologia relativamente mais tarde, de forma que se especializou na oferta de soja convencional entre 1996 e 2005. Por outro lado, os Estados Unidos e a Argentina adotaram a tecnologia em 1996, e passaram a exportar, sobretudo, para destinos com menor aversão à tecnologia. O objetivo deste artigo é explorar as relações entre a adoção da tecnologia das sementes geneticamente modificadas e as mudanças nos mercados globais (preços, origens e destinos e parcelas de mercado), buscando, sobretudo, verificar a existência de preços diferenciados para a soja brasileira, a partir da análise dos valores unitários de comércio. Para tanto, foram utilizados métodos de análise multivariada (análise de componente principal e de agrupamento) e estimou-se um modelo de efeitos aleatórios a partir de uma base de dados de comércio de 1986 a 2010. Os resultados reforçam que a tecnologia altera o padrão de comércio, mas diferenciais de preço para a soja brasileira são verificados apenas em mercados de nicho, em que a parcela de mercado do Brasil é relativamente menor.
 

Palavras-chave

comércio de transgênicos, rejeição de mercado, diferencial de preços, inovação tecnológica e comércio

Referências

Berthou, A., & Emlinger, C. (2011). The trade unit values database. Inter Economics, 128, 97-117. http://dx.doi.org/10.1016/S2110-7017(13)60005-0

Bullock, D. S., & Desquilbet, M. (2002). The Economics of Non-GMO Segregation and Identity Preservation. Food Policy, 27(1), 81-99. http://linkinghub.elsevier.com/retrieve/pii/S0306919202000040 http://dx.doi.org/10.1016/S0306-9192(02)00004-0

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245-276.

Choi, E. K. (2010). International trade in genetically modified products. International Review of Economics & Finance, 19(3), 383-391. http://dx.doi.org/10.1016/j.iref.2009.04.002

Desquilbet, M., & Bullock, D. S. (2009). Who pays the costs of Non-GMO segregation and identity preservation? American Journal of Agricultural Economics, 91(3), 656-672. http://dx.doi.org/10.1111/j.1467-8276.2009.01262.x

Everitt, B., & Hothorn, T. (2011). An Introduction to applied multivariate analysis with R. New York: Springer. http://dx.doi.org/10.1007/978-1-4419-9650-3.

Faria, R. N., & Wieck, C. (2015). Empirical evidence on the trade impact of asynchronous regulatory approval of new GMO events. Food Policy, 53, 22-32. http://dx.doi.org/10.1016/j.foodpol.2015.03.005

Food and Agriculture Organization of the United Nations – FAO. (2013). FAOSTAT. Rome: FAO. Retrieved in 2019, June 2, from http://faostat.fao.org/site/406/default.aspx

Foster, M. (2010). Evidence of price premiums for non-GM grains in world markets. Australia: Australian Agricultural and Resource Economics Society.

Goodall, C., & Jolliffe, I. T. (1988). Principal component analysis. Technometrics, 30(3), 351-352. http://dx.doi.org/10.1080/00401706.1988.10488412

Henseler, M., Piot-Lepetit, I., Ferrari, E., Mellado, A. G., Banse, M., Grethe, H., Parisi, C., & Hélaine, S. (2013). On the asynchronous approvals of GM crops: potential market impacts of a trade disruption of EU soy imports. Food Policy, 41, 166-176. http://dx.doi.org/10.1016/j.foodpol.2013.05.005

James, C. (2013). Global status of commercialized biotech/GM crops: 2010 (ISAAA Brief, No. 46). Ithaca: ISAAA.

Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis (6th ed.). New Jersey: Prentice Hall.

Jolliffe, I. T. (1972). Discarding variables in a principal component analysis. I: artificial data. Journal of the Royal Statistical Society. Series A (General), 21(2), 160-173.

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141-151.

Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: an R package for multivariate analysis. Journal of Statistical Software, 25(1), 1-18. Retrieved in 2019, June 2, from http://www.jstatsoft.org/v25/i01

Lence, S. H., & Hayes, D. J. (2001). Response to an asymmetric demand for attributes : an application to the market for genetically modified crops (No. 92). Kansas: Kansas State University.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2012). Cluster: cluster analysis basics and extensions. Vienna: R Foundation for Statistical Computing.

Oliveira, A. L. R., Silveira, J. M. F. J., & Alvim, A. M. (2012). Cartagena protocol, biosafety and grain segregation: the effects on the soybean logistics in Brazil. Journal of Agricultural Research and Development, 2(1), 17-30.

Parcell, J. L., & Kalaitzandonakes, N. G. (2004). Do agricultural commodity prices respond to bans against bioengineered crops? Canadian Journal of Agricultural Economics, 52(2), 201-209. http://dx.doi.org/10.1111/j.1744-7976.2004.tb00102.x

R Core Team. (2012). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved in 2019, June 2, from http://www.r-project.org/

Revelle, W. (2013). Psych: procedures for psychological, psychometric, and personality research. Evanston: R Foundation for Statistical Computing. Retrieved in 2019, June 2, from http://cran.r-project.org/package=psych

Tillie, P., & Rodríguez-Cerezo, E. (2015). Markets for non-genetically modified, identity-preserved soybean in the EU (JRC Scientific and Policy Reports). Seville: European Commission. http://dx.doi.org/10.2791/949110.

Ward Junior, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236-244.

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. Cambridge: MIT Press. Retrieved in 2019, June 2, from http://www.amazon.com/Econometric-Analysis-Cross-Section-Panel/dp/0262232588
 


Submetido em:
05/08/2016

Aceito em:
22/12/2018

5ea7580b0e8825bc6df17448 resr Articles

resr

Share this page
Page Sections