Efficiency and productivity to social welfare: the case of the main forestry-producing micro-regions in Brazil
Eficiência e produtividade do bem-estar social: o caso das principais microrregiões florestais do Brasil
Jessica Suarez Campoli; Paulo Nocera Alves Junior; Tatiana Kimura Kodama; Marcelo Seido Nagano; Heloisa Lee Burnquist
Abstract
Keywords
Resumo
Palavras-chave
Referências
Ahn, H., Afsharian, M., Emrouznejad, A., & Banker, R. (2018). Recent developments on the use of DEA in the public sector.
Associação Brasileira Técnica de Celulose e Papel – ABTCP. (2023).
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis.
Brasil. Ministério da Agricultura e Pecuária. (2018).
Brasil. Sistema Nacional de Informações Florestais – SNIF. (2021).
Camioto, F. D. C., & Pulita, A. C. (2022). Efficiency evaluation of sustainable development in BRICS and G7 countries: a Data Envelopment Analysis approach.
Camioto, F. D. C., Mariano, E. B., & Rebelatto, D. A. (2017). Sustainability improvement opportunities in Brazilian sectors: analysis of DEA slacks.
Campoli, J. S., & Stivali, M. (2023).
Campoli, J. S., Alves Junior, P. N., Kodama, T. K., Nagano, M. S., & Burnquist, H. L. (2024a). G20 countries’ progress on the 7th SDG under circular economy DEA model.
Campoli, J. S., Kodama, T. K., Nagano, M. S., & Burnquist, H. L. (2024b). Advancing circular economy: G20 nations’ path towards 12th sustainable development goal.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units.
[REMOVED IF= FIELD]Charnes, A., Cooper, W. W., Lewin, A. Y. and Seiford, L. M. (1994).
Chen, J.-X., Deng, M., & Gingras, S. (2011). A modified super-efficiency measure based on simultaneous input–output projection in data envelopment analysis.
Chen, Y., & Liang, L. (2011). Super-efficiency DEA in the presence of infeasibility: one model approach.
Chen, Y., Su, X., & Hipel, K. W. (2009). An index aggregation approach to comparing the overall performance of emerging and developed countries.
Coelho, M. R. F., & Coelho, M. H. (2013). Panorama da indústria de celulose e papel no Brasil: 2001 a 2011.
Coelli, T. J., Rao, D. S. P., O’Donnell, C. J., & Battese, G. E. (2005).
Cook, W. D., Tone, K., & Zhu, J. (2014). Data envelopment analysis: prior to choosing a model.
Cooper, W. W., Seiford, L. M., & Tone, K. (2007).
Dyckhoff, H., & Souren, R. (2020). Data envelopment methodology of performance evaluation. In H. Dyckhoff & R. Souren (Eds.),
Fang, H.-H., Lee, H.-S., Hwang, S.-N., & Chung, C.-C. (2013). A slacks-based measure of super-efficiency in data envelopment analysis: an alternative approach.
Fare, R., & Grosskopf, S. (1992). Malmquist productivity indexes and fisher ideal indexes.
Fare, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries.
Farrell, M. J. (1957). The measurement of productive efficiency.
Ferreira, C. M. C., & Gomes, A. P. (2020).
Firjan. (2021).
Food and Agriculture Organization – FAO. (2021).
Gandour, C., Diego, M., João Pedro, V., & Assunção, J. J. (2021).
Hou, J., Ruan, X., Lv, J., & Guo, H. (2020). Two-stage super-efficiency slacks-based model to assess China’s ecological wellbeing.
Indústria Brasileira de Árvores – IBÁ. (2017).
Indústria Brasileira de Árvores – IBÁ. (2019).
Indústria Brasileira de Árvores – IBÁ. (2022).
Instituto Brasileiro de Geografia e Estatística – IBGE. (2021a).
Instituto Brasileiro de Geografia e Estatística – IBGE. (2021b).
Instituto Brasileiro de Geografia e Estatística – IBGE. (2021c).
Instituto Nacional de Pesquisas Espaciais – INPE. (2021).
Kourtit, K., Nijkamp, P., & Suzuki, S. (2020). Are global cities sustainability champions? A double delinking analysis of environmental performance of urban agglomerations.
Lábaj, M., Luptáčik, M., & Nežinský, E. (2014). Data envelopment analysis for measuring economic growth in terms of welfare beyond GDP.
Lara, C. S., Costa, C. R., & Sampaio, P. T. B. (2021). O mercado de sementes e mudas de pau-rosa (
Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M., & Börner, J. (2021). Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon.
Liu, T., Li, J., Chen, J., & Yang, S. (2019). Urban ecological efficiency and its influencing factors: a case study in Henan province, China.
Long, R., Ouyang, H., & Guo, H. (2020). Super-slack-based measuring data envelopment analysis on the spatial–temporal patterns of logistics ecological efficiency using global Malmquist Index model.
López, R., & Miller, S. J. (2008). Chile: the unbearable burden of inequality.
Lovejoy, T. E., & Nobre, C. (2018). Amazon tipping point.
Mariano, E. B., & Rebelatto, D. A. (2014). Transformation of wealth produced into quality of life: Analysis of the social efficiency of nation-states with the DEA’s triple index approach.
Montebello, A. E. S., & Bacha, C. J. C. (2009). Avaliação das pesquisas e inovações tecnológicas ocorridas na silvicultura e na produção industrial de celulose no Brasil.
Moralles, H. F., & Rebelatto, D. A. (2016). The effects and time lags of R&D spillovers in Brazil.
Moreno‐Enguix, M. D. R., & Lorente Bayona, L. V. (2017). Factors affecting public expenditure efficiency in developed countries.
O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., & Solecki, W. (2017). The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century.
O’Sullivan, A., & Sheffrin, S. M. (2006).
Observatory of Economic Complexity – OEC. (2021).
Ren, W., Zhang, Z., Wang, Y., Xue, B., & Chen, X. (2020). Measuring regional eco-efficiency in China (2003-2016): a “Full World” perspective and network data envelopment analysis.
Rentizelas, A., Melo, I. C., Alves Junior, P. N., Campoli, J. S., & Aparecida do Nascimento Rebelatto, D. (2019). Multi-criteria efficiency assessment of international biomass supply chain pathways using Data Envelopment Analysis.
Robalino-López, A., Mena-Nieto, A., García-Ramos, J.-E., & Golpe, A. A. (2015). Studying the relationship between economic growth, CO2 emissions, and the environmental Kuznets curve in Venezuela (1980-2025).
Sarmento, J., Renneboog, L., & Verga Matos, P. (2017). Measuring highway efficiency by a DEA approach and the Malmquist index.
Selvatti, T. S. (2015).
Shah, W. U. H., Hao, G., Yan, H., Shen, J., & Yasmeen, R. (2024). Forestry resource efficiency, total factor productivity change, and regional technological heterogeneity in China.
Song, Y., & Mei, D. (2022). Sustainable development of China’s regions from the perspective of ecological welfare performance: analysis based on GM (1, 1) and the Malmquist index.
Sun, Y., & Wang, N. (2022). Evolution and obstacle factors of high-quality industrial development in the π-shaped Curve Area of the Yellow River basin in China.
Thore, S., & Tarverdyan, R. (2009). Using data envelopment analysis to quantify ILO objectives and identify policies conducive to decent work in a globalizing world.
Timber Trade Portal. (2023).
Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis.
Tone, K. (2002). A slacks-based measure of super-efficiency in data envelopment analysis.
Tone, K. (2011). Slacks-based measure of efficiency. In W. W. Cooper, L. M. Seiford & J. Zhu (Eds.),
Tone, K. (2017).
Tone, K., & Tsutsui, M. (2017). Malmquist productivity index models. In K. Tone (Ed.),
Ülengin, F., Kabak, Ö., Önsel, S., Aktas, E., & Parker, B. R. (2011). The competitiveness of nations and implications for human development.
Varella, T. S., Oliveira Neto, G. C., & Sousa, T. B. (2022). Adoption of cleaner production in a pupunha palm heart factory: a systematic literature review and a case study.
Wong, S. Y. (2020). Assessment of public expenditure efficiency: a review.
World Integrated Trade Solutions – WITS. (2020).
Yang, Z., & Soltani, N. (2021). A new SBM-based global Malmquist productivity index and target setting.
Zhang, C., Li, J., Liu, T., Xu, M., Wang, H., & Li, X. (2022). The spatiotemporal evolution and influencing factors of the Chinese cities’ ecological welfare performance.
Zhu, J. (2001). Super-efficiency and DEA sensitivity analysis.
Submetido em:
17/07/2023
Aceito em:
26/08/2024