Revista de Economia e Sociologia Rural
https://revistasober.org/article/doi/10.1590/1806-9479.2025.266252
Revista de Economia e Sociologia Rural
ORIGINAL ARTICLE

Impact of a crop insurance mechanism on credit obtained by smallholders: evidence from “Proagro Mais” in Paraná

Impacto de um mecanismo de seguro agrícola no crédito na agricultura familiar: evidência do “Proagro Mais” no Paraná

Carlos Oñate-Paredes; Vitor Augusto Ozaki

Downloads: 0
Views: 58

Abstract

This research analyzes a public compulsory crop-credit public insurance program, Proagro Mais, which is one of the largest agricultural risk management programs in Brazil and is also focused on smallholder producers. In particular, this study assesses the influence of the program on the amount of credit obtained per hectare by smallholder corn producers in the state of Paraná, Brazil. The primary dataset is a comprehensive database of agricultural credit borrowers comprising 93.303 individuals. The methodology incorporates the propensity score matching (PSM) at the endline year, employing three distinct matching algorithms, and PSM at the baseline, coupled with the difference-in-differences method. The results indicate that the treatment had ambiguous effect on the treated, with reduced impacts when compared with the outcome variable means. This suggests that the control group may have employed agricultural risk management tools other than Proagro Mais to mitigate the effects of low production on the average credit per hectare. It should be noted that this research represents one of the few impact evaluation studies on crop insurance in Latin America.

Keywords

crop insurance mechanism, impact evaluation, Brazil

Resumo

Resumo: Esta pesquisa analisa o programa público compulsório (com crédito) de seguro agrícola Proagro Mais, que é um dos maiores programas de gestão de risco rural no Brasil, que também é focado nos produtores de pequena escala. Especificamente, foi avaliado o impacto deste programa no valor do crédito obtido por hectare pelos pequenos produtores de milho no Estado do Paraná. O principal componente da informação é um grande banco de dados de mutuários de crédito agrícola composto por 93.303 indivíduos. A metodologia inclui pareamento por escore de propensão (PSM) no ano final (usando três algoritmos de pareamento diferentes) e PSM (na linha de base) juntamente com diferenças em diferenças. Os resultados mostram efeitos ambíguos do tratamento nos indivíduos tratados, porém todos eles com impactos reduzidos quando comparados com as médias da variável de resultado. Isso sugere que o grupo de controle pode ter utilizado outras ferramentas de gestão de risco agrícola além do Proagro Mais para mitigar os efeitos da baixa produção no crédito médio por hectare. Cabe ressaltar que, esta pesquisa é um dos poucos estudos de avaliação de impacto sobre seguro agrícola na América Latina.

Palavras-chave

mecanismos de seguro agrícola, avaliação de impacto, Brasil

Referências

Aerts, K., & Schmidt, T. (2008). Two for the price of one? Additionality effects of R&D subsidies: a comparison between Flanders and Germany. Research Policy, 37(5), 806-822. http://doi.org/10.1016/j.respol.2008.01.011

Agrometrópole. (2024). Gastos com Proagro disparam, e governo e BC estudam mudanças. Retrieved in 2015, March 12, from https://www.agrometropole.com.br/2024/02/03/gastos-com-proagro-disparam-e-governo-e-bc-estudam-mudancas/

Arias, D., Mendes, P., & Abel, P. (2015). Revisão rápida e integrada da gestão de riscos agropecuários no Brasil: caminhos para uma visão integrada. Brasília: Banco Mundial.

Athey, S., & Imbens, G. W. (2006). Identification and inference in nonlinear difference‐in‐differences models. Econometrica, 74(2), 431-497. http://doi.org/10.1111/j.1468-0262.2006.00668.x

Ben‐Yashar, R., Krausz, M., & Nitzan, S. (2018). Government loan guarantees and the credit decision‐making structure. The Canadian Journal of Economics, 51(2), 607-625. http://doi.org/10.1111/caje.12332

Blundell, R., & Costa Dias, M. (2000). Evaluation methods for non‐experimental data. Fiscal Studies, 21(4), 427-468. http://doi.org/10.1111/j.1475-5890.2000.tb00031.x

Brasil. Banco Central do Brasil – BACEN. (2004). Resolução n° 3,234 de 31 agosto de 2004. Altera disposições do Proagro, constituindo no seu âmbito o “Proagro Mais”, para atender aos pequenos produtores vinculados ao Pronaf. Retrieved in 2016, January 18, from https://www.bcb.gov.br/pre/normativos/busca/downloadNormativo.asp?arquivo=/Lists/Normativos/Attachments/46344/Res_3234_v1_O.pdf

Brasil. Banco Central do Brasil – BACEN. (2012). Resolução n° 4,107 de 28 de junho de 28, 2012. Altera as disposições do Programa Nacional de Fortalecimento da Agricultura Familiar (Pronaf), de que trate o Capítulo 10 do Manual de Crédito Rural (MCR), para aplicação a partir da safra 2012/2013. Retrieved in 2016, February 8, from https://www.bcb.gov.br/htms/normativ/RESOLUCAO4107.pdf

Brasil. Banco Central do Brasil – BACEN. (2014). Resolução n° 4,375 de 30 de setembro de 2014. Altera o Manual de Crédito Rural (MCR) com a finalidade de estabelecer, a partir de 1º de janeiro de 2015, novas condições para o Programa de Garantia da Atividade Agropecuária da Agricultura Familiar (Proagro Mais). Retrieved in 2016, April 20, from https://www.bcb.gov.br/htms/normativ/resolucao4375.pdf

Brasil. Banco Central do Brasil – BACEN. (2015a). Anuário estatístico de crédito rural. Retrieved in 2015, July 10, from http://www.bcb.gov.br/?RELRURAL

Brasil. (2015b). Agritempo: sistema de monitoramento agrometeorológico. Retrieved in 2015, February 9, from http://www.agritempo.gov.br/agritempo/produtos.jsp?siglaUF=PR

Brasil. Ipeadata. (2016). Exchange rates. Retrieved in 2016, May 27, from http://www.ipeadata.gov.br

Brasil. Banco Central do Brasil – BACEN. (2018a). Manual de crédito rural. Retrieved in 2018, June 20, from Retrieve from http://www3.bcb.gov.br/mcr

Brasil. Banco Central do Brasil – BACEN. (2018b). Programa de Garantia da Atividade Agropecuária (PROAGRO): relatório circunstanciado 1999 a 2010. Retrieved in 2018, July 2, from https://www.bcb.gov.br/htms/proagro/PROAGRO_Relatorio_Circunstanciado_1999-2010.pdf

Brasil. Banco Central do Brasil – BACEN. (2018c). Programa de Garantia de Atividade Agropecuária (PROAGRO): relatório circunstanciado 2004 a 2012. Retrieved in 2018, July 2, from https://www.bcb.gov.br/htms/proagro/PROAGRO-RelatorioCircunstanciado2004a2012.pdf

Brasil. Banco Central do Brasil – BACEN. (2018d). Programa de Garantia de Atividade Agropecuária (PROAGRO): relatório circunstanciado 2011 a 2014. Retrieved in 2018, July 3, from https://www.bcb.gov.br/htms/proagro/PROAGRO-RelatorioCircunstanciado2011a2014.pdf

Brasil. Banco Central do Brasil – BACEN. (2018e). Programa de Garantia de Atividade Agropecuária (PROAGRO): relatório circunstanciado 2012 a 2015. Retrieved in 2018, July 3, from https://www.bcb.gov.br/htms/proagro/PROAGRO-relatorioCircunstanciado2012a2015.pdf

Brasil. Ministério da Agricultura, Pecuária e Abastacimento – MDA. (2019). Garantia-Safra Benefício condicionado da Agricultura Familiar. Retrieved in 2023, June 28, from https://www.gov.br/agricultura/pt-br/assuntos/mda/garantia-safra/arquivos/dados-consolidados.pdf

Brasil. (2022). Programa de Seguro Rural. Retrieved in 2023, June 28, from https://www.gov.br/agricultura/pt-br/assuntos/riscos-seguro/seguro-rural

Brasil. Banco Central do Brasil – BACEN. (2023). Matriz de dados do Proagro. Retrieved in 2023, June 28, from https://www.bcb.gov.br/estabilidadefinanceira/proagro

Cai, J. (2016). The impact of insurance provision on household production and financial decisions. American Economic Journal. Economic Policy, 8(2), 44-88. http://doi.org/10.1257/pol.20130371

Caliendo, M., & Kopeinig, S. (2008). Some practical guidance for the implementation of propensity score matching. Journal of Economic Surveys, 22(1), 31-72. http://doi.org/10.1111/j.1467-6419.2007.00527.x

Cariappa, A. A., Mahida, D. P., Lal, P., & Chandel, B. S. (2020). Correlates and impact of crop insurance in India: evidence from a nationally representative survey. Agricultural Finance Review, 81(2), 204-221. http://doi.org/10.1108/AFR-03-2020-0034

Cochran, W. (1977). Sampling techniques (3rd ed.). New York: John Wiley & Sons.

Cole, S., Giné, X., Tobacman, J., Topalova, P., Townsend, R., & Vickery, J. (2013). Barriers to household risk management: evidence from India. American Economic Journal. Applied Economics, 5(1), 104-135. http://doi.org/10.1257/app.5.1.104

Congressional Research Service – CRS. (2021). Federal crop insurance: a primer. Retrieved in 2023, June 28, from https://sgp.fas.org/crs/misc/R46686.pdf

DeLay, N. D., Brewer, B., Featherstone, A., & Boussios, D. (2023). The impact of crop insurance on farm financial outcomes. Applied Economic Perspectives and Policy, 45(1), 579-601. http://doi.org/10.1002/aepp.13223

Food and Agriculture Organization of the United Nations – FAO. (2023). FAOSTAT statistics database. Retrieved in 2023, June 27, from https://www.fao.org/faostat/en/#data/QCL

Franco, A., Marques, O., & Vidigal Filho, P. (2015). Sistemas de produção do milho safrinha no Paraná. In Anais do Seminário de Milho Safrinha. Retrieved in 2015, March 12, from http://www.cpao.embrapa.br/cds/milhosafrinha2013/palestras/13PEDROSOARESVIDIGALFILHO.pdf

Gertler, P. J., Martinez, S., Premand, P., Rawlings, L. B., & Vermeersch, C. M. (2016). Impact evaluation in practice. Washington, D.C.: World Bank Group.

Giné, X., & Yang, D. (2009). Insurance, credit, and technology adoption: field experimental evidencefrom Malawi. Journal of Development Economics, 89(1), 1-11. http://doi.org/10.1016/j.jdeveco.2008.09.007

Hazell, P., Meyer, R., & Varangis, P. (2017). Unlocking smallholder credit: does credit-linked agricultural insurance work? Washington, D.C.: World Bank Group.

Heckman, J. J. (1990). Selection bias and self-selection. In J. Eatwell, M. Milgate & P. Newman (Eds.), Econometrics (pp. 201-224). London: Palgrave Macmillan.

Heinrich, C., Maffioli, A., & Vazquez, G. (2010). A primer for applying propensity-score matching. Washington, D.C.: Inter-American Development Bank.

Ifft, J., Kuethe, T., & Schultz, A. (2019). Crop insurance’s impact on agricultural lenders. In 2019 Agricultural & Applied Economics Association Annual Meeting, Atlanta, GA.

Instituto Brasileiro de Geografia e Estatística – IBGE. (2021). Censo agropecuário. Retrieved in 2021, January 14, from https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9827-censo-agropecuario.html?=&t=o-que-e

Instituto Brasileiro de Geografia e Estatística – IBGE. (2023). Produção agrícola municipal. Retrieved in 2023, June 27, from https://sidra.ibge.gov.br/tabela/1612

Iturrioz, R., & Arias, D. (2010). Agricultural insurance in Latin America: developing the market. Washington, D.C.: World Bank Group. Retrieved in 2021, January 14, from http://documents.worldbank.org/curated/en/179701468277786453/Agricultural-insurance-in-Latin-America-developing-the-market

Khandker, S. B., Koolwal, G., & Samad, H. (2010). Handbook on impact evaluation: quantitative methods and practices. Washington, D.C.: World Bank Group.

López, F., & Maffioli, A. (2008). Technology adoption, productivity and specialization of Uruguayan breeders: evidence from an impact evaluation. Washington, D.C.: Inter-American Development Bank.

Mishra, K., Gallenstein, R. A., Miranda, M. J., Sam, A. G., Toledo, P., & Mulangu, F. (2021). Insured loans and credit access: evidence from a randomized field experiment in northern Ghana. American Journal of Agricultural Economics, 103(3), 923-943. http://doi.org/10.1111/ajae.12136

Priscilla, L., & Chauhan, A. K. (2019). Economic impact of cooperative membership on dairy farmers in Manipur: a propensity score matching approach. Agricultural Economics Research Review, 32(1), 117-123. http://doi.org/10.5958/0974-0279.2019.00010.7

Raviv, A. (1979). The design of an optimal insurance policy. The American Economic Review, 69(1), 84-96.

Sanglestsawai, S., Rejesus, R. M., & Yorobe Junior, J. M. (2015). Economic impacts of integrated pest management (IPM) farmer field schools (FFS): evidence from onion farmers in the Philippines. Agricultural Economics, 46(2), 149-162. http://doi.org/10.1111/agec.12147

Smith, J. A., & Todd, P. E. (2005). Does matching overcome LaLonde’s critique of nonexperimental estimators? Journal of Econometrics, 125(1-2), 305-353. http://doi.org/10.1016/j.jeconom.2004.04.011

Spörri, M., Baráth, L., Bokusheva, R., & Fertö, I. (2012, February). The impact of crop insurance on the economic performance of Hungarian cropping farms. In 123rd EAAE Seminar ‘Price Volatility and Farm Income Stabilisation. Modelling Outcomes and Assessing Market and Policy Based Responses’ (pp. 23-24), Dublin.

Távora, F. L. (2014). Renegociação de dívida rural: reflexões sobre o financiamento da agricultura brasileira. Brasília: Senado Federal.

Tsiboe, F., & Turner, D. (2023). Econometric identification of crop insurance participation. Agricultural and Resource Economics Review, 52(3), 476-497. http://doi.org/10.1017/age.2023.13

Universidade de São Paulo – USP. Centro de Estudos Avançados em Economia Aplicada – CEPEA. (2016). Indicador de preços do milho ESALQ/BMFBovespa. Retrieved in 2016, January 5, from http://cepea.esalq.usp.br/milho/

Universidade de São Paulo – USP. Centro de Estudos Avançados em Economia Aplicada – CEPEA. (2023). PIB do agronegócio brasileiro. Retrieved in 2023, June 27, from https://www.cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx

U.S. Department of Agriculture – USDA. (2023). Retrieved in 2023, June 27, from https://www.ers.usda.gov/topics/farm-practices-management/risk-management/crop-insurance-at-a-glance/

Varadan, R. J., & Kumar, P. (2012). Impact of crop insurance on rice farming in Tamil Nadu. Agricultural Economics Research Review, 25(2), 291-298.

Winters, P., Salazar, L., & Maffioli, A. (2010). Designing impact evaluations for agricultural projects. Washington, D.C.: Inter-American Development Bank.
 


Submetido em:
22/06/2022

Aceito em:
26/09/2024

67509cfaa953957c21689f96 resr Articles
Links & Downloads

resr

Share this page
Page Sections