Revista de Economia e Sociologia Rural
https://revistasober.org/article/doi/10.1590/1806-9479.2025.291499
Revista de Economia e Sociologia Rural
ORIGINAL ARTICLE

Methodological proposal for market risk assessment in agriculture: a case study of the Hass avocado

Proposta metodológica para avaliação do risco de mercado na agricultura: estudo de caso do abacate Hass

Fabio Velásquez Botero; Raúl Armando Cardona Montoya; Sergio Andrés Sierra Luján; Edwin Andrés Jiménez Echeverri

Downloads: 1
Views: 38

Abstract

This study addresses agricultural risks as an emerging category in risk assessment and focuses on measuring market risk and its impact on producers and financial entities. Since the lack of measurement can limit producers' decisions and hinder access to financing and planning measures to mitigate or transfer risks, a methodology is proposed and validated to evaluate market risk in the agricultural sector through a case study focused on the Hass avocado in Antioquia. The results lead to quantifying the market risk as high and proposing using three indicators associated with a historical context in avocado prices. Furthermore, risk qualification is similar when exploring risk measurement in a forecasting context due to a downward trend in forecast prices. In conclusion, it is determined that the proposed risk measurement methodology is adaptable to other agricultural systems and makes it possible to identify and understand market risks, tracing the route for making more informed decisions in production and financial leverage of the crop.

Keywords

Agricultural finances, risk management, agricultural risk, agricultural market risk, agricultural economy

Resumo

Resumo: Este estudo aborda os riscos agrícolas como uma categoria emergente na avaliação de riscos e se concentra na medição do risco de mercado e seu impacto sobre os produtores e as entidades financeiras. Como a falta de mensuração pode limitar as decisões dos produtores e dificultar o acesso ao financiamento e às medidas de planejamento para mitigar ou transferir riscos, é proposta e validada uma metodologia para avaliar o risco de mercado no setor agrícola por meio de um estudo de caso focado no abacate Hass em Antioquia. Os resultados permitem quantificar o risco de mercado como alto e propor o uso de três indicadores associados a um contexto histórico nos preços do abacate. Além disso, a qualificação do risco é semelhante ao explorar a medição do risco em um contexto de previsão devido a uma tendência de queda nos preços previstos. Em conclusão, determina-se que a metodologia proposta de mensuração de risco é adaptável a outros sistemas agrícolas e possibilita identificar e compreender os riscos de mercado, traçando o caminho para tomar decisões mais informadas na produção e alavancagem financeira da cultura.

Palavras-chave

finanças agrícolas, gestão de riscos, risco agrícola, risco de mercado agrícola, economia agrícola

References

Arbeláez, L. C. F., & Ceballos, L. E. F. (2005). El valor en riesgo condicional como medida coherente de riesgo. Revista Ingenierías Universidad de Medellín, 4(6), 43-54. Retrieved in 2024, October 29, from https://bit.ly/3UrQ2d5

Arias Vargas, F. J., Ribes Giner, G., & Garcés Giraldo, L. F. (2022). Emprendimiento rural: una aproximación histórica. Retos, 12(23), 45–66. http://doi.org/10.17163/ret.n23.2022.03.

Asociación Nacional de Comercio Exterior – ANALDEX. (2025a). Informe exportaciones de aguacate hass 2024. Retrieved in 2024, October 29, from https://analdex.org/2025/02/17/informe-exportaciones-de-aguacate-hass-2024/#:~:text=En 2024%2C las exportaciones de,a lo exportado en 2023

Asociación Nacional de Comercio Exterior – ANALDEX. (2025b). El aguacate Hass impulsó las exportaciones de tres departamentos del país. Nota de Prensa Aguacate Regiones. Retrieved in 2024, October 29, from https://analdex.org/2025/02/18/el-aguacate-hass-impulso-las-exportaciones-de-tres-departamentos-del-pais/

Assouto, A. B., Houensou, D. A., & Semedo, G. (2020). Price risk and farmers’ decisions: a case study from Benin. Scientific American, 8, e00311. http://doi.org/10.1016/j.sciaf.2020.e00311

Ávila, J. (2009). Metodologías de medición del riesgo de mercado. Innovar, 19(34), 187-199.

Bernal Estrada, J. A., & Díaz Diez, C. A. (2020). Generalidades del cultivo. In J. A. Bernal Estrada & C. A. Díaz Diez (Eds.), Actualización tecnológica y buenas prácticas agrícolas (BPA) en el cultivo de aguacate (2nd ed., pp. 77–328). AGROSAVIA. http://doi.org/10.21930/agrosavia.manual.7403831.

Birthal, P. S., Hazrana, J., & Negi, D. S. (2021). Effectiveness of Farmers’ risk management strategies in smallholder agriculture: evidence from India. Climatic Change, 169(3-4), 30. http://doi.org/10.1007/s10584-021-03271-1

Bonato, M. (2019). Realized correlations, betas, and volatility spillover in the agricultural commodity market: What has changed? Journal of International Financial Markets, Institutions and Money, 62, 184-202. http://doi.org/10.1016/j.intfin.2019.07.005

Brum, A. L., Baggio, D. K., Souza, F. M., Batista, G., & Schneider, I. N. (2023). Influência dos fundos de investimento na formação das cotações do milho na Bolsa de Cereais de Chicago. Revista de Economia e Sociologia Rural, 61(1), e251575. http://doi.org/10.1590/1806-9479.2021.251575

Carvalho, M. L. P., & Felema, J. (2022). Projeção do preço da arroba do boi gordo no estado de São Paulo utilizando modelos lineares dinâmicos. Revista de Economia e Sociologia Rural, 60(spe), e249166. https://doi.org/10.1590/1806-9479.2021.249166.

Chen, P., & Ye, H. (2022). Short-term Forecast of Agricultural Prices Using CNN+LSTM. In Proceedings of the 7th International Conference on Intelligent Information Processing (pp. 1–5). ACM. http://doi.org/10.1145/3570236.3570283

Chen, Q., Lin, X., Zhong, Y., & Xie, Z. (2019). Price Prediction of Agricultural Products Based on Wavelet Analysis-LSTM. In Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) (pp. 984-990). USA: IEEE. http://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00142

Chuan, W., Junye, Z., & Min, H. (2010). Measurement of the Fluctuation risk of the china fruit market price based on VaR. Agriculture and Agricultural Science Procedia, 1, 212-218. http://doi.org/10.1016/j.aaspro.2010.09.026

Chuluunsaikhan, T., Ryu, G.-A., Yoo, K.-H., Rah, H., & Nasridinov, A. (2020). Incorporating deep learning and news topic modeling for forecasting pork prices: the case of South Korea. Agriculture, 10(11), 513. http://doi.org/10.3390/agriculture10110513

Colombia. Unidad de Planificación Rural Agropecuaria – UPRA. (2023). Evaluaciones Agropecuarias Municipales. Retrieved in 2024, October 29, from https://upra.gov.co/es-co/eva-2023

Colombia. Departamento Administrativo Nacional de Estadística – DANE. (2025). Producto Interno Bruto -PIB- nacional trimestral. Históricos. Retrieved in 2024, October 29, from https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales/historicos-producto-interno-bruto-pib

Dias, T. K. M., Silva, V. H. M. C., & Costa, E. M. (2023). Rural credit and production of temporary farming in the different scenarios of Northeast Brazil. Revista de Economia e Sociologia Rural, 61(1), e247380. http://doi.org/10.1590/1806-9479.2021.247380

Food and Agriculture Organization of the United Nations – FAO. (2010). Price volatility in agricultural markets. Rome: FAO. Retrieved in 2024, October 29, from http://www.fao.org/economic/es-policybriefs.

Food and Agriculture Organization of the United Nations – FAO. (2024). Crops and livestock products-Avocado filter. Rome: FAO. Retrieved in 2024, October 29, from https://www.fao.org/faostat/en/#data/QCL

Gozgor, G. (2019). Effects of the agricultural commodity and the food price volatility on economic integration: an empirical assessment. Empirical Economics, 56(1), 173-202. http://doi.org/10.1007/s00181-017-1359-6

Grewal, D., & Daneshyari, M. D. (2022). Machine learning prediction of agricultural produces for Indian Farmers using LSTM. International Journal of Multidisciplinary Research and Growth Evaluation, 113–119. http://doi.org/10.54660/anfo.2022.3.5.5

Grupo Banco Mundial. (2017). Análisis de riesgo del sector Agropecuario en Paraguay. Grupo Banco Mundial.

Gu, Y. H., Jin, D., Yin, H., Zheng, R., Piao, X., & Yoo, S. J. (2022). Forecasting Agricultural commodity prices using dual input attention LSTM. Agriculture, 12(2), 256. http://doi.org/10.3390/agriculture12020256

Guimarães, G. A. M. C., & Guanziroli, C. E. (2023). Nova proposta de avaliação de economias de escopo e escala no sistema de produção de suínos, frangos e milho. Revista de Economia e Sociologia Rural, 61(2), e249455. http://doi.org/10.1590/1806-9479.2021.249455

Insana, A. (2022). Does systematic risk change when markets close? An analysis using stocks’ beta. Economic Modelling, 109, 105782. http://doi.org/10.1016/j.econmod.2022.105782

Jin, D., Yin, H., Gu, Y., & Yoo, S. J. (2019). Forecasting of Vegetable Prices using STL-LSTM Method. In Proceedings of the 2019 6th International Conference on Systems and Informatics (ICSAI) (pp. 866-871). New York: IEEE. http://doi.org/10.1109/ICSAI48974.2019.9010181

Kahan, D. (2013a). Managing risk in farming: farm management extension guide (Vol. 3). Rome: Food and Agriculture Organization of the United Nations.

Kahan, D., & Food and Agriculture Organization of the United Nations. (2013b). Managing risk in farm. FAO.

Kitworawut, P., & Rungreunganun, V. (2020). Corn price modeling and forecasting using box-jenkins model. Applied Science and Engineering Progress, 12, 277-285.

Komarek, A. M., De Pinto, A., & Smith, V. H. (2020). A review of types of risks in agriculture: what we know and what we need to know. Agricultural Systems, 178, 102738. http://doi.org/10.1016/j.agsy.2019.102738

KumarMahto, A., Biswas, R., & Alam, M. A., (2019). Short term forecasting of agriculture commodity price by using Arima: based on Indian market. Communications in Computer and Information Science, 1045, 452-461. http://doi.org/10.1007/978-981-13-9939-8_40

Leucci, A. C., Ghinoi, S., Sgargi, D., & Wesz Junior, V. J. (2014). VAR Models for Dynamic Analysis of Prices in the Agri-food System. In C. Zopounidis, N. Kalogeras, K. Mattas, G. van Dijk, & G. Baourakis (Eds.), Agricultural cooperative management and policy (pp. 3-21). Springer. http://doi.org/10.1007/978-3-319-06635-6_1

Li, G. Q., Xu, S. W., & Li, Z. M. (2010). Short-term price forecasting for agro-products using artificial neural networks. Agriculture and Agricultural Science Procedia, 1, 278-287. http://doi.org/10.1016/j.aaspro.2010.09.035

Li, Z. M., Xu, S. W., Cui, L. G., Li, G. Q., Dong, X. X., & Wu, J. Z. (2013). The short-term forecastmodel of porkpricebased on CNN-GA. Advanced Materials Research, 628, 350-358. http://doi.org/10.4028/www.scientific.net/AMR.628.350

Marroquín Martínez, G., & Chalita Tovar, L. E. (2011). Aplicación de la metodología Box-Jenkins para pronósticos de precios en Jitomate. Revista Mexicana de Ciencias Agrícolas, 2(4), 573-577. http://doi.org/10.29312/remexca.v2i4.1643

Méndez, C. E. (2020). Metodología de la Investigación. Diseño y desarrollo del proceso de investigación en ciencias empresariales (Quinta Edi). Alpha Editorial.

Montoya, L. A., & Montoya, I. A. (2022). Negocios inclusivos. Un modelo de metáfora biológica para el sector agropecuario. Retos, 12(23), 25-44. http://doi.org/10.17163/ret.n23.2022.02

Mulla, S., & Quadri, S. (2020). Crop-yield and price forecasting using machine learning. The International Journal of Analytical and Experimental Modal Analysis, 12(8), 1731-1737.

Pelka, N., Musshoff, O., & Weber, R. (2015). Does weather matter? How rainfall affects credit risk in agricultural microfinance. Agricultural Finance Review, 75(2), 194-212. http://doi.org/10.1108/AFR-10-2014-0030

Piot-Lepetit, I., & M’Barek, R. (2011). Methods to analyse agricultural commodity price volatility. Springer. http://doi.org/10.1007/978-1-4419-7634-5

Procolombia. (2025). Avocados from Colombia: The Green Gold Thriving in 30+ Countries. Retrieved in 2024, October 29, from https://procolombia.co/en/colombiatrade/buyer/articles/avocados-from-colombia-quality-flavor?

Purohit, S. K., Panigrahi, S., Sethy, P. K., & Behera, S. K. (2021). Time series forecasting of price of agricultural products using hybrid methods. Applied Artificial Intelligence, 35(15), 1388-1406. http://doi.org/10.1080/08839514.2021.1981659

Rondón Salas, T. M., Builes Gaitán, S., Casamitjana Causa, M., Duque Ríos, M., Rodríguez-León, A. K., Vega Marín, C. A., Ruiz, D., & Rodríguez Yzquierdo, G. A. (2020). Perspectiva del ordenamiento productivo del aguacate cv. Hass en Antioquia. In J. A. Bernal Estrada & C. A. Díaz Diez (Eds.), Actualización tecnológica y buenas prácticas agrícolas (BPA) en el cultivo de aguacate (2nd ed., pp. 715-756). AGROSAVIA. http://doi.org/10.21930/agrosavia.manual.7403831

Sabu, K. M., & Kumar, T. K. M. (2020). Predictive analytics in agriculture: forecasting prices of Arecanuts in Kerala. Procedia Computer Science, 171, 699-708. http://doi.org/10.1016/j.procs.2020.04.076

Şahinli, M. A. (2020). Potato price forecasting with holt-winters and ARIMA methods: a case study. American Journal of Potato Research, 97(4), 336-346. http://doi.org/10.1007/s12230-020-09788-y

Spriggs, J. (2014). Forecasts of indiana monthly farm prices using univariate box-jenkins analysis and corn futures prices. Oxford University Press, 3(1), 81–87.

van Oordt, M. R. C., Stork, P. A., & de Vries, C. G. (2021). On agricultural commodities’ extreme price risk. Extremes, 24(3), 531-563. http://doi.org/10.1007/s10687-020-00401-3

Zou, H. F., Xia, G. P., Yang, F. T., & Wang, H. Y. (2007). An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting. Neurocomputing, 70(16-18), 2913-2923. http://doi.org/10.1016/j.neucom.2007.01.009
 


Submitted date:
10/29/2024

Accepted date:
06/17/2025

Publication date:
10/17/2025

68f2a035a9539503e73fa523 resr Articles
Links & Downloads

resr

Share this page
Page Sections