Methodological proposal for market risk assessment in agriculture: a case study of the Hass avocado
Proposta metodológica para avaliação do risco de mercado na agricultura: estudo de caso do abacate Hass
Fabio Velásquez Botero; Raúl Armando Cardona Montoya; Sergio Andrés Sierra Luján; Edwin Andrés Jiménez Echeverri
Abstract
Keywords
Resumo
Palavras-chave
References
Arbeláez, L. C. F., & Ceballos, L. E. F. (2005). El valor en riesgo condicional como medida coherente de riesgo.
Arias Vargas, F. J., Ribes Giner, G., & Garcés Giraldo, L. F. (2022). Emprendimiento rural: una aproximación histórica.
Asociación Nacional de Comercio Exterior – ANALDEX. (2025a).
Asociación Nacional de Comercio Exterior – ANALDEX. (2025b).
Assouto, A. B., Houensou, D. A., & Semedo, G. (2020). Price risk and farmers’ decisions: a case study from Benin.
Ávila, J. (2009). Metodologías de medición del riesgo de mercado.
Bernal Estrada, J. A., & Díaz Diez, C. A. (2020). Generalidades del cultivo. In J. A. Bernal Estrada & C. A. Díaz Diez (Eds.),
Birthal, P. S., Hazrana, J., & Negi, D. S. (2021). Effectiveness of Farmers’ risk management strategies in smallholder agriculture: evidence from India.
Bonato, M. (2019). Realized correlations, betas, and volatility spillover in the agricultural commodity market: What has changed?
Brum, A. L., Baggio, D. K., Souza, F. M., Batista, G., & Schneider, I. N. (2023). Influência dos fundos de investimento na formação das cotações do milho na Bolsa de Cereais de Chicago.
Carvalho, M. L. P., & Felema, J. (2022). Projeção do preço da arroba do boi gordo no estado de São Paulo utilizando modelos lineares dinâmicos.
Chen, P., & Ye, H. (2022). Short-term Forecast of Agricultural Prices Using CNN+LSTM. In
Chen, Q., Lin, X., Zhong, Y., & Xie, Z. (2019). Price Prediction of Agricultural Products Based on Wavelet Analysis-LSTM. In
Chuan, W., Junye, Z., & Min, H. (2010). Measurement of the Fluctuation risk of the china fruit market price based on VaR.
Chuluunsaikhan, T., Ryu, G.-A., Yoo, K.-H., Rah, H., & Nasridinov, A. (2020). Incorporating deep learning and news topic modeling for forecasting pork prices: the case of South Korea.
Colombia. Unidad de Planificación Rural Agropecuaria – UPRA. (2023).
Colombia. Departamento Administrativo Nacional de Estadística – DANE. (2025).
Dias, T. K. M., Silva, V. H. M. C., & Costa, E. M. (2023). Rural credit and production of temporary farming in the different scenarios of Northeast Brazil.
Food and Agriculture Organization of the United Nations – FAO. (2010).
Food and Agriculture Organization of the United Nations – FAO. (2024).
Gozgor, G. (2019). Effects of the agricultural commodity and the food price volatility on economic integration: an empirical assessment.
Grewal, D., & Daneshyari, M. D. (2022). Machine learning prediction of agricultural produces for Indian Farmers using LSTM.
Grupo Banco Mundial. (2017).
Gu, Y. H., Jin, D., Yin, H., Zheng, R., Piao, X., & Yoo, S. J. (2022). Forecasting Agricultural commodity prices using dual input attention LSTM.
Guimarães, G. A. M. C., & Guanziroli, C. E. (2023). Nova proposta de avaliação de economias de escopo e escala no sistema de produção de suínos, frangos e milho.
Insana, A. (2022). Does systematic risk change when markets close? An analysis using stocks’ beta.
Jin, D., Yin, H., Gu, Y., & Yoo, S. J. (2019). Forecasting of Vegetable Prices using STL-LSTM Method. In
Kahan, D. (2013a).
Kahan, D., & Food and Agriculture Organization of the United Nations. (2013b).
Kitworawut, P., & Rungreunganun, V. (2020). Corn price modeling and forecasting using box-jenkins model.
Komarek, A. M., De Pinto, A., & Smith, V. H. (2020). A review of types of risks in agriculture: what we know and what we need to know.
KumarMahto, A., Biswas, R., & Alam, M. A., (2019). Short term forecasting of agriculture commodity price by using Arima: based on Indian market.
Leucci, A. C., Ghinoi, S., Sgargi, D., & Wesz Junior, V. J. (2014). VAR Models for Dynamic Analysis of Prices in the Agri-food System. In C. Zopounidis, N. Kalogeras, K. Mattas, G. van Dijk, & G. Baourakis (Eds.),
Li, G. Q., Xu, S. W., & Li, Z. M. (2010). Short-term price forecasting for agro-products using artificial neural networks.
Li, Z. M., Xu, S. W., Cui, L. G., Li, G. Q., Dong, X. X., & Wu, J. Z. (2013). The short-term forecastmodel of porkpricebased on CNN-GA.
Marroquín Martínez, G., & Chalita Tovar, L. E. (2011). Aplicación de la metodología Box-Jenkins para pronósticos de precios en Jitomate.
Méndez, C. E. (2020).
Montoya, L. A., & Montoya, I. A. (2022). Negocios inclusivos. Un modelo de metáfora biológica para el sector agropecuario.
Mulla, S., & Quadri, S. (2020). Crop-yield and price forecasting using machine learning.
Pelka, N., Musshoff, O., & Weber, R. (2015). Does weather matter? How rainfall affects credit risk in agricultural microfinance.
Piot-Lepetit, I., & M’Barek, R. (2011).
Procolombia. (2025).
Purohit, S. K., Panigrahi, S., Sethy, P. K., & Behera, S. K. (2021). Time series forecasting of price of agricultural products using hybrid methods.
Rondón Salas, T. M., Builes Gaitán, S., Casamitjana Causa, M., Duque Ríos, M., Rodríguez-León, A. K., Vega Marín, C. A., Ruiz, D., & Rodríguez Yzquierdo, G. A. (2020). Perspectiva del ordenamiento productivo del aguacate cv. Hass en Antioquia. In J. A. Bernal Estrada & C. A. Díaz Diez (Eds.),
Sabu, K. M., & Kumar, T. K. M. (2020). Predictive analytics in agriculture: forecasting prices of Arecanuts in Kerala.
Şahinli, M. A. (2020). Potato price forecasting with holt-winters and ARIMA methods: a case study.
Spriggs, J. (2014). Forecasts of indiana monthly farm prices using univariate box-jenkins analysis and corn futures prices.
van Oordt, M. R. C., Stork, P. A., & de Vries, C. G. (2021). On agricultural commodities’ extreme price risk.
Zou, H. F., Xia, G. P., Yang, F. T., & Wang, H. Y. (2007). An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting.
Submitted date:
10/29/2024
Accepted date:
06/17/2025
Publication date:
10/17/2025