Revista de Economia e Sociologia Rural
https://revistasober.org/article/doi/10.1590/1806-9479.2022.257641
Revista de Economia e Sociologia Rural
ORIGINAL ARTICLE

The impact of the USDA soybean crop condition reports on CBOT futures prices

O impacto da informação pública fornecida pelo USDA sobre a condição da lavoura de soja americana na expectativa de oferta e nos preços futuros na CBOT

Isadora Vercesi Bethlem; Roberto Arruda de Souza Lima; Lilian Maluf de Lima

Downloads: 0
Views: 627

Abstract

Soybean price formation in the Chicago Board of Trade (CBOT) is determined by many variables, with supply expectations being one of the most critical. The United States Department of Agriculture (USDA) publishes the Crop Progress report (CPR) weekly and, among other information, the public report contains an evaluation of current growing conditions in areas under soybean cultivation in the country. Agent awareness of crop conditions before harvest should affect their expectations of the soybean volume (supply) that will enter the market and should affect soybean futures contract prices, possibly in a predictable manner. This study is designed to examine this hypothesis by determining if the CPR’s weekly release has a predictable impact on the following day’s soybean futures contract price. Between 1995 and 2018, a 1% increase in soybean crop area evaluated as “good” and “excellent” (Condition variable) in the weekly CPR reduced soybean futures contract prices by 0.45% the day following the report’s release and vice versa, and that the price trend ramped notably upward in 2008.

Keywords

supply expectation, soybean, public information, linear regression, CPR

Resumo

Resumo:: A precificação da soja na bolsa de Chicago (CBOT) é determinada por diversas variáveis, sendo a expectativa de oferta uma das mais importantes. O Departamento de Agricultura dos Estados Unidos (USDA) publica semanalmente, ao longo da safra americana, o relatório de progresso das culturas, chamado de Crop Progress report (CPR). Entre outras informações, o relatório consiste na avaliação das condições das lavouras que estão em desenvolvimento no campo e, entre elas, a avaliação das áreas de soja no país. As informações sobre as condições da cultura de soja afetam as expectativas dos agentes em relação ao volume (oferta) de grãos que entrarão no mercado após a colheita e devem refletir nos preços dos contratos futuros da soja, possivelmente de uma maneira preditiva. O presente estudo visa examinar essa hipótese e entender se a divulgação semanal do CPR tem impacto previsível no preço dos contratos futuros da soja no dia seguinte à sua divulgação. Entre 1995 e 2018, estimou-se que a variação de 1% na avaliação das áreas consideradas como “boas” e “excelentes”, entre um relatório e outro, variou, no sentindo contrário, os preços futuros em 0,45% Notou-se também que os preços atingiram um novo patamar de preço em 2008.
 

Palavras-chave

expectativa de oferta, soja, informação pública, regressão linear, CPR

Referências

Bain, R., & Fortenbery, T. R. (2016). Impact of crop condition reports on national and local wheat markets. Journal of Agricultural and Applied Economics, 49, 97-119. http://dx.doi.org/10.1017/aae.2016.31

Black, C. (2015). The price of soy in the last 10 years. FEE. Retrieved in 2021, May 12, from http://panoramainternacional.fee.tche.br/article/o-preco-da-soja-no-ultimo-decenio/

Bloomberg Terminal. (2020). Bloomberg Professional Services. Retrieved 2020, February 20, from https://www.bloomberg.com/professional/solution/bloomberg-terminal/

BM&F. (2006). Future price formation. Retrieved in 2021, May 12, from https://mbafinancasebanking.files.wordpress.com/2014/03/mat2-para-leitura.pdf

Campbell, J. Y., Lo, A. W., & Mackinlay, A. C. (1997). The econometrics of financial markets. Princeton: Princeton University Press.

Centro de Estudos Avançados em Economia Aplicada – CEPEA. (2008). Agromensal: soybean december. Retrieved in 2021, May 12, from https://www.cepea.esalq.usp.br/upload/revista/pdf/0022499001465840559.pdf

CME Group. (2013). Self-study guide to hedging with grain and oilseed futures and options. Retrieved in 2021, May 12, from http://www.cmegroup.com/trading/agricultural/files/grain-oilseed-hedgers-guide.pdf

Falk, B., & Orazem, P. F. (1984). A theory of futures market responses to government crop forecasts. Economic Staff Paper Series, 34(150), XX-XX.

Ferguson, C. E. (1972). Microeconomic theory. (3rd ed.). Homewood: Irwin-Dorsey.

Food and Agriculture Organization of the United Nations – FAO. (2011). The state of agricultural commodity markets: high food prices and the food crisis – experiences and lessons learned. Retrieved in 2021, May 12, from http://www.fao.org/fileadmin/user_upload/ISFP/High_food_prices.pdf

Fortenbery, T. R., & Summer, D. A. (1993). The effects of USDA reports in futures and options markets. Journal of Futures Markets, 13(2), 157-173.

Frank, R. H. (1997). Microeconomics and Behavior (3rd ed.). Nova York: McGraw-Hill.

Garcia, P., Mallory, M., & Trujillo-Barrera, A. (2012). Volatility spillovers in U.S. crude oil, ethanol, and corn Futures Markets. Journal of Agricultural and Resource Economics, 37(2), 247-262.

Good, D. L., Irwin, S. H., & Isengildina, O. (2006). The value of USDA situation and outlook information in hog and cattle markets. Journal of Agricultural and Resource Economics, 31(2), 262-282.

Gujarati, D. N. (1995). Basic econometrics. (3rd ed.). Nova York: McGraw-Hill.

Hoffmann, R. (2006). Statistics for economists. (4th ed.). São Paulo: Thompson.

Kaufman, F. (2010). The food bubble: how wall street starved millions and got away with it. Harper’s Magazine. p. 27-34. Retrieved 2022, July 13, from https://www.democracynow.org/2010/7/16/the_food_bubble_how_wall_street

Leftwich, R. H. (1974). The pricing system and resource allocation 4th ed.). São Paulo: Editor Livraria Pioneira.

Lehecka, G. V. (2014). The Value of USDA Crop Progress and Condition Information: reactions of corn and soybean futures markets. Journal of Agricultural and Resource Economics, 39(1), 88-105.

McKenzie, M. A. (2008). Pre-harvest price expectations for corn: the information content of USDA reports and new-crop futures. American Journal of Agricultural Economics, 90(2), 351-366.

Milonas, N. T. (1987). The Effects of USDA crop announcements on commodity prices. Journal of Futures Markets, 7(5), 571-589.

National Agricultural Statistics Service – NASS. (2020a). Retrieved 2020, July 8, from https://www.nass.usda.gov/index.php

National Agricultural Statistics Service – NASS. (2020b). Data & statistics. Washington, DC: NASS. Retrieved 2020, June 5, from https://www.nass.usda.gov/Data_and_Statistics/index.php

National Agricultural Statistics Service – NASS. (2020c). Crop progress: report of day 9/14/2020. Washington, DC: NASS. Retrieved 2020, June 5, from https://downloads.usda.library.cornell.edu/usda-esmis/files/8336h188j/qr46rp789/2r36vm941/prog3820.pdf

Oliveira, M. T. (2014). Distância psíquica e seus efeitos sobre o fluxo de exportações dos estados brasileiros (Ph.D. thesis). Universidade de Coimbra, Coimbra.

Pimentel-Gomes, F. (1984). Modern statistics in agricultural research (3rd ed.). Piracicaba: Potafos.

Pindyck, R. S., & Rubinfeld, D. L. (2006). Microeconomics. (8th ed.). Upper Saddle River: Pearson.

Wooldridge, J. M. (2009). Introduction to econometrics: a modern approach. (4th ed.). São Paulo: Cengage Learning.
 


Submetido em:
24/10/2021

Aceito em:
05/04/2022

62d97ea8a95395234b1ce843 resr Articles
Links & Downloads

resr

Share this page
Page Sections