Revista de Economia e Sociologia Rural
https://revistasober.org/article/doi/10.1590/1806-9479.2025.284274
Revista de Economia e Sociologia Rural
ORIGINAL ARTICLE

Enhancing crop insurance analysis with agricultural zoning data

Melhoria da análise de seguro agrícola com dados de zoneamento agrícola

Gilson Martins; Guilherme Signorini

Downloads: 3
Views: 168

Abstract

This article proposes a framework for integrating agricultural zoning data into insurance risk analysis. It is based on combining official public information from the Brazilian zoning program, ZARC, with open insurance data provided by the Brazilian Ministry of Agriculture and Livestock. The methodology presented in this article transforms ZARC information into distributional data and integrates it into a Bayesian model alongside insurance indemnities data, allowing for comprehensive risk analysis. It uses information on soil types from ZARC to develop basic best- and worst-case scenarios and calculate posterior distributions using insurance data. The resulting framework enables the comparison of municipalities, crop types, and overall risk classification. The study applies the framework to analyze the risk of soybeans, corn, wheat, and corn double-crop in Paraná State, resulting in consistent risk classifications across all crops and municipalities. The proposed framework has the potential to enhance agricultural risk management analysis for reinsurers, insurers, government agencies, and private companies. Future research could explore the use of this methodology to compare insurers, analyze risk in structured operations of credit and insurance, and evaluate risks at the farm level. This article presents a potential tool for improving risk analysis and decision-making in the agricultural sector.

Keywords

crop risk-management, Bayesian Analysis, agricultural risk classification, adverse selection, beta distribution

Resumo

Resumo: Este artigo propõe uma estrutura para integrar dados de zoneamento agrícola na análise de riscos de seguros. Baseia-se na combinação de informações públicas do programa brasileiro de zoneamento, o ZARC, com dados abertos de seguros fornecidos pelo Ministério da Agricultura e Pecuária. A metodologia apresentada transforma as informações do ZARC em dados de distribuição e as integra em um modelo Bayesiano juntamente com dados de indenizações de seguros, permitindo uma análise de risco abrangente. Utiliza informações sobre tipos de solo do ZARC para desenvolver cenários e calcular distribuições posteriores. A estrutura resultante possibilita a comparação entre municípios, tipos de culturas e classificação geral de risco. O estudo aplica a estrutura para analisar o risco de soja, milho, trigo e milho safrinha no Paraná, resultando em classificações de risco consistentes em todas as culturas e municípios. A estrutura proposta aprimora a análise de gestão de risco agrícola para resseguradoras, seguradoras, agências governamentais e empresas privadas. Pesquisas futuras poderiam explorar a metodologia para comparar seguradoras, analisar riscos em operações estruturadas de crédito e seguro, e avaliar riscos no nível das fazendas. O artigo apresenta uma ferramenta para melhorar a análise de risco e a tomada de decisões no setor agrícola.

Palavras-chave

gestão de riscos rurais, Análise Bayesiana, classificação de risco agrícola, seleção adversa, distribuição beta

Referências

Abbaspour, K. C. (1994). Bayesian risk methodology for crop insurance decisions. Agricultural and Forest Meteorology, 71(3–4), 297-314. http://dx.doi.org/10.1016/0168-1923(94)90017-5

Akerlof, G. A. (1970). The Market for “Lemons”: Quality Uncertainty and the Market Mechanism. The Quarterly Journal of Economics, 84(3), 488-500. http://dx.doi.org/10.2307/1879431

Aparecido, L. E. O., Batista, R. M., Moraes, J. R. S. C., Costa, C. T. S., & Moraes-Oliveira, A. F. (2019). Agricultural zoning of climate risk for Physalis peruviana cultivation in Southeastern Brazil. Pesquisa Agropecuária Brasileira, 54. https://doi.org/10.1590/S1678-3921.pab2019.v54.00057

Bonatto, M. I., Bosco, L. C., Pandolfo, C., Ricce, W. da S., Stanck, L. T., de Souza, A. G., Rossato, O. B., & Streck, N. A. (2021). Agricultural climate risk zoning for gladiolus in santa catarina. Revista Brasileira De Climatologia, 28, 619-633. Retrieved in 2024, March 7, from https://ojs.ufgd.edu.br/index.php/rbclima/article/view/14771

Brisolara, C. S., & Ozaki, V. A. (2022). Uma proposição metodológica para a precificação de seguro de receita agrícola no Brasil. Revista de Economia e Sociologia Rural, 60(2), e235656. http://dx.doi.org/10.1590/1806-9479.2021.235656

Brito, J. E. D., Santos, M. A., Lyra, G. B., Ferreira Júnior, R. A., & Souza, J. L. (2022). Maize sowing dates in the hinterland region of Northeast Brazil. Agrometeoros, 30, e026954. http://dx.doi.org/10.31062/agrom.v30.e026954

Caldana, N. F. S., Nitsche, P. R., Martelocio, A. C., Rudke, A. P., Zaro, G. C., Ferreira, L. G. B., Zaccheo, P. V. C., Carvalho, S. L. C., & Martins, J. A. (2019). Agroclimatic Risk Zoning of Avocado (Persea americana) in the Hydrographic Basin of Paraná River III, Brazil. Agriculture, 9(12), 263. http://dx.doi.org/10.3390/agriculture9120263

Campbell, C. A., Selles, F., Zentner, R. P., & McConkey, B. G. (1993). Available water and nitrogen effects on yield components and grain nitrogen of zero-till spring wheat. Agronomy Journal, 85(1), 114-120. http://dx.doi.org/10.2134/agronj1993.00021962008500010022x

Casella, G., & Berger, R. L. (1990). Statistical inference (2nd ed.). Belmont: Duxbury Press.

Cox, M. S., Gerard, P. D., Wardlaw, M. C., & Abshire, M. J. (2003). Variability of selected soil properties and their relationships with soybean yield. Soil Science Society of America Journal, 67(4), 1296-1302. http://dx.doi.org/10.2136/sssaj2003.1296

Cunha, G. R., Barni, N. A., Haas, J. C., Maluf, J. R. T., Matzenauer, R., Pasinato, A., Pimentel, M. B. M., & Pires, J. L. F. (2001a). Zoneamento agrícola e época de semeadura para soja no Rio Grande do Sul. Revista Brasileira de Agrometeorologia, 9, 446-459.

Cunha, G. R., Haas, J. C., Maluf, J. R. T., Caramori, P. H., Assad, E. D., Braga, H. J., Zullo Junior, J., Lazzarotto, C., Gonçalves, S., Wrege, M., Druneta, D., Dotto, S. R., Pinto, H. S., Brunini, O., Thomé, V. M. R., Zampieri, S. L., Pasinato, A., Pimentel, M. B. M., & Pandolfo, C. (2001b). Zoneamento agrícola e época de semeadura para trigo no Brasil. Revista Brasileira de Agrometeorologia, 9, 400-414.

Dalhaus, T., Barnett, B. J., & Finger, R. (2020). Behavioral weather insurance: Applying cumulative prospect theory to agricultural insurance design under narrow framing. PLoS One, 15(5), e0232267. http://dx.doi.org/10.1371/journal.pone.0232267

Dominoni, A. P. F., Caldana, N. F. S., Rodrigues, L., Negrão, B. W., Favoretto, V. R., Bodnar, V. R., & Silva, M. A. A. (2021). Agricultural zoning and recommendations for the seeding of wheat (Triticum species) in the Central-Southern Mesoregion of Paraná State in Brazil. African Journal of Agricultural Research, 17(7), 979-990. http://dx.doi.org/10.5897/AJAR2020.15272

Food and Agriculture Organization of the United Nations – FAO. (2021). The impact of disasters and crises 2021 on agriculture and food security: 2021. Rome. Food and Agriculture Organization of the United Nations. http://doi.org/10.4060/cb3673en

Gonçalves, S. L., & Wrege, M. S. (2018). Considerações sobre metodologias para zoneamento agrícola em escala regionalizada. Agrometeoros, 26(2), 275-285. Retrieved in 2024, March 7, from https://seer.sct.embrapa.br/index.php/agrometeoros/article/view/26426/14567

Grimm, A. M. (2004). How do La Niña events disturb the summer monsoon system in Brazil? Climate Dynamics, 22, 123-138. http://dx.doi.org/10.1007/s00382-003-0368-7

Heinemann, A. B., Ramirez-Villegas, J., Stone, L. F., Silva, A. P. G. A., da Matta, D. H., & Diaz, M. E. P. (2021). The impact of El Niño Southern Oscillation on cropping season rainfall variability across Central Brazil. International Journal of Climatology, 41(Suppl.1), E283-E304. http://dx.doi.org/10.1002/joc.6684

Hoff, P. D. (2009). A first course in Bayesian statistical methods. New York: Springer.

Judge, G. G., Hill, R. C., Griffiths, W. E., Lütkepohl, H., & Lee, T. C. (1988). Introduction to the theory and practice of econometrics. Hoboken, NJ: John Wiley & Sons.

Kravchenko, A. N., & Bullock, D. G. (2000). Correlation of corn and soybean grain yield with topography and soil properties. Agronomy Journal, 92(1), 75-83. http://dx.doi.org/10.2134/agronj2000.92175x

Liu, Y., & Ker, A. P. (2020). Rating Crop Insurance Contracts with Nonparametric Bayesian Model Averaging. Journal of Agricultural and Resource Economics, 45(2), 244-264. Retrieved in 2024, March 7, from https://www.jstor.org/stable/27154064

Liu, Y., & Ramsey, A. F. (2023). Incorporating historical weather information in crop insurance rating. American Journal of Agricultural Economics, 105(2), 546-575. http://dx.doi.org/10.1111/ajae.12329

Miranda, M. J., & Glauber, J. W. (1997). Systemic risk, reinsurance, and the failure of crop insurance markets. American Journal of Agricultural Economics, 79(1), 206-215. http://dx.doi.org/10.2307/1243954

National Oceanic and Atmospheric Administration – NOAA. (2023). El Niño Southern Oscillation (ENSO) diagnostic discussion. Retrieved in 2024, March 7, from https://www.cpc.ncep.noaa.gov/products/expert_assessment/ENSO_DD_archive.php

Nyiraneza, J., Cambouris, A. N., Ziadi, N., Tremblay, N., & Nolin, M. C. (2012). Spring wheat yield and quality related to soil texture and nitrogen fertilization. Agronomy Journal, 104(3), 589-599. http://dx.doi.org/10.2134/agronj2011.0342

Ozaki, V. A. (2009). Pricing farm-level agricultural insurance: a Bayesian approach. Empirical Economics, 36, 231-242. http://dx.doi.org/10.1007/s00181-008-0193-2

Ozaki, V. A., & Silva, R. S. (2009). Bayesian ratemaking procedure of crop insurance contracts with skewed distribution. Journal of Applied Statistics, 36(4), 443-452. http://dx.doi.org/10.1080/02664760802474256

Ozaki, V. A., Goodwin, B. K., & Shirota, R. (2011). Parametric and nonparametric statistical modelling of crop yield: implications for pricing crop insurance contracts. Applied Economics, 40(9), 1151-1164. http://dx.doi.org/10.1080/00036840600749680

Ozaki, V. A., Olinda, R., Faria, P. N., & Campos, R. C. (2014). Estimation of the agricultural probability of loss: evidence for soybean in Paraná state. Revista de Economia e Sociologia Rural, 52(1), 25-40. http://dx.doi.org/10.1590/S0103-20032014000100002

Ozaki, V. A., Olinda, R., Faria, P. N., & Campos, R.C. (2014). Estimating the probability of loss in agricultural insurance: An application of extreme value theory. Revista de Economia e Sociologia Rural, 52(1), 83-98. http://dx.doi.org/10.1590/S0103-20032014000100002

Pandolfo, C., Da Silva, B. E., & Werner, S. S. (2021). Publicações sobre o zoneamento agrícola em revistas científicas no Brasil de 1995 a 2018. Agrometeoros. Passo Fundo, 29(e026864), 1-10. http://dx.doi.org/10.31062/agrom.v29.e026864

Park, E., Brorsen, B. W., & Harri, A. (2019). Using bayesian kriging for spatial smoothing in crop insurance rating. American Journal of Agricultural Economics, 101(2), 330-351. http://dx.doi.org/10.1093/ajae/aay045

Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global yield variability. Nature Communications, 6, 5989. http://dx.doi.org/10.1038/ncomms6989

Rejesus, R. M., Coble, K. H., Miller, M. F., Boyles, R., Goodwin, B. K., & Knight, T. O. (2015). Accounting for weather probabilities in crop insurance rating. Journal of Agricultural and Resource Economics, 40(2), 306-324. Retrieved in 2024, March 7, from https://www.jstor.org/stable/44131863

Secretaria Estadual de Agricultura e Abastecimento – SEAB. (2022). Estimativa de Safra. Retrieved in 2024, March 7, from https://www.agricultura.pr.gov.br/deral/safras

Sene, M., Vepraskas, M. J., Naderman, G. C., & Denton, H. P. (1985). Relationships of soil texture and structure to corn yield response to subsoiling. Soil Science Society of America Journal, 49(2), 422-427. http://dx.doi.org/10.2136/sssaj1985.03615995004900020030x

Shi, W., & Irwin, S. H. (2005). Optimal hedging with a subjective view: An empirical Bayesian Approach. American Journal of Agricultural Economics, 87(4), 918-930. http://dx.doi.org/10.1111/j.1467-8276.2005.00778.x

Tack, J. B., & Ubilava, D. (2015). Climate and agricultural risk: Measuring the effect of Enso on US crop insurance. Agricultural Economics, 46(2), 245-257. http://dx.doi.org/10.1111/agec.12154

Tsiboe, F., & Tack, J. (2021). Utilizing Topographic and Soil Features to Improve Rating for Farm-Level Insurance Products. American Journal of Agricultural Economics, 104(1), 52-69. http://dx.doi.org/10.1111/ajae.12218

Uhlmann, L. O., Ramos, P. C. S., Cunha, G. R., Parfitt, J. M. B., Galvani, D. B., & Buriol, G. A. (2020). Climate risk zoning for gladiolus in the state of Rio Grande do Sul, Brazil. Pesquisa Agropecuária Brasileira, 55(e01094), http://dx.doi.org/10.1590/S1678-3921.pab2020.v55.01094

Wilson, A., Avila-Diaz, A., Oliveira, L. F., Zuluaga, C. F., & Mark, B. (2022). Climate extremes and their impacts on agriculture across the Eastern corn belt region of the U.S. Weather and Climate Extremes, 37, 100467. http://dx.doi.org/10.1016/j.wace.2022.100467

Woodard, J. D., & Verteramo-Chiu, L. J. (2017). Efficiency impacts of utilizing soil data in the pricing of the federal crop insurance program. American Journal of Agricultural Economics, 99(3), 757-772. http://dx.doi.org/10.1093/ajae/aaw099

Yamada, E. S. M., & Sentelhas, P. C. (2014). Agro-climatic zoning of Jatropha curcas as a subside for crop planning and implementation in Brazil. International Journal of Biometeorology, 58, 1995-2010. http://dx.doi.org/10.1007/s00484-014-0803-y

Yi, F., Zhou, M., & Zhang, Y. Y. (2020). Value of incorporating Enso forecast in crop insurance programs. American Journal of Agricultural Economics, 102(2), 439-457. http://dx.doi.org/10.1002/ajae.12034

Zhu, W., Porth, L., & Tan, K. S. (2019). A credibility-based yield forecasting model for crop reinsurance pricing and weather risk management. Agricultural Finance Review, 79(1), 2-26. http://dx.doi.org/10.1108/AFR-08-2017-0064
 


Submetido em:
07/03/2024

Aceito em:
21/09/2024

674a03d1a953955567590c02 resr Articles
Links & Downloads

resr

Share this page
Page Sections